![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > evls1expd | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd 21795. (Contributed by Thierry Arnoux, 24-Jan-2025.) |
Ref | Expression |
---|---|
evls1expd.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1expd.k | ⊢ 𝐾 = (Base‘𝑆) |
evls1expd.w | ⊢ 𝑊 = (Poly1‘𝑈) |
evls1expd.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1expd.b | ⊢ 𝐵 = (Base‘𝑊) |
evls1expd.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1expd.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1expd.1 | ⊢ ∧ = (.g‘(mulGrp‘𝑊)) |
evls1expd.2 | ⊢ ↑ = (.g‘(mulGrp‘𝑆)) |
evls1expd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
evls1expd.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
evls1expd.c | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
Ref | Expression |
---|---|
evls1expd | ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑀))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1expd.q | . . . 4 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
2 | evls1expd.u | . . . 4 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
3 | evls1expd.w | . . . 4 ⊢ 𝑊 = (Poly1‘𝑈) | |
4 | eqid 2732 | . . . 4 ⊢ (mulGrp‘𝑊) = (mulGrp‘𝑊) | |
5 | evls1expd.k | . . . 4 ⊢ 𝐾 = (Base‘𝑆) | |
6 | evls1expd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
7 | evls1expd.1 | . . . 4 ⊢ ∧ = (.g‘(mulGrp‘𝑊)) | |
8 | evls1expd.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
9 | evls1expd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
10 | evls1expd.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
11 | evls1expd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | evls1pw 21776 | . . 3 ⊢ (𝜑 → (𝑄‘(𝑁 ∧ 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑀))) |
13 | 12 | fveq1d 6881 | . 2 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑀))‘𝐶) = ((𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑀))‘𝐶)) |
14 | eqid 2732 | . . 3 ⊢ (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾) | |
15 | eqid 2732 | . . 3 ⊢ (Base‘(𝑆 ↑s 𝐾)) = (Base‘(𝑆 ↑s 𝐾)) | |
16 | eqid 2732 | . . 3 ⊢ (mulGrp‘(𝑆 ↑s 𝐾)) = (mulGrp‘(𝑆 ↑s 𝐾)) | |
17 | eqid 2732 | . . 3 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
18 | eqid 2732 | . . 3 ⊢ (.g‘(mulGrp‘(𝑆 ↑s 𝐾))) = (.g‘(mulGrp‘(𝑆 ↑s 𝐾))) | |
19 | evls1expd.2 | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑆)) | |
20 | 8 | crngringd 20029 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Ring) |
21 | 5 | fvexi 6893 | . . . 4 ⊢ 𝐾 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐾 ∈ V) |
23 | 1, 5, 14, 2, 3 | evls1rhm 21772 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
24 | 8, 9, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾))) |
25 | 6, 15 | rhmf 20215 | . . . . 5 ⊢ (𝑄 ∈ (𝑊 RingHom (𝑆 ↑s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑄:𝐵⟶(Base‘(𝑆 ↑s 𝐾))) |
27 | 26, 11 | ffvelcdmd 7073 | . . 3 ⊢ (𝜑 → (𝑄‘𝑀) ∈ (Base‘(𝑆 ↑s 𝐾))) |
28 | evls1expd.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
29 | 14, 15, 16, 17, 18, 19, 20, 22, 10, 27, 28 | pwsexpg 20099 | . 2 ⊢ (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆 ↑s 𝐾)))(𝑄‘𝑀))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐶))) |
30 | 13, 29 | eqtrd 2772 | 1 ⊢ (𝜑 → ((𝑄‘(𝑁 ∧ 𝑀))‘𝐶) = (𝑁 ↑ ((𝑄‘𝑀)‘𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟶wf 6529 ‘cfv 6533 (class class class)co 7394 ℕ0cn0 12456 Basecbs 17128 ↾s cress 17157 ↑s cpws 17376 .gcmg 18924 mulGrpcmgp 19948 CRingccrg 20017 RingHom crh 20200 SubRingcsubrg 20310 Poly1cpl1 21632 evalSub1 ces1 21763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7654 df-ofr 7655 df-om 7840 df-1st 7959 df-2nd 7960 df-supp 8131 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-er 8688 df-map 8807 df-pm 8808 df-ixp 8877 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-fsupp 9347 df-sup 9421 df-oi 9489 df-card 9918 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-z 12543 df-dec 12662 df-uz 12807 df-fz 13469 df-fzo 13612 df-seq 13951 df-hash 14275 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17129 df-ress 17158 df-plusg 17194 df-mulr 17195 df-sca 17197 df-vsca 17198 df-ip 17199 df-tset 17200 df-ple 17201 df-ds 17203 df-hom 17205 df-cco 17206 df-0g 17371 df-gsum 17372 df-prds 17377 df-pws 17379 df-mre 17514 df-mrc 17515 df-acs 17517 df-mgm 18545 df-sgrp 18594 df-mnd 18605 df-mhm 18649 df-submnd 18650 df-grp 18799 df-minusg 18800 df-sbg 18801 df-mulg 18925 df-subg 18977 df-ghm 19058 df-cntz 19149 df-cmn 19616 df-abl 19617 df-mgp 19949 df-ur 19966 df-srg 19970 df-ring 20018 df-cring 20019 df-rnghom 20203 df-subrg 20312 df-lmod 20424 df-lss 20494 df-lsp 20534 df-assa 21343 df-asp 21344 df-ascl 21345 df-psr 21395 df-mvr 21396 df-mpl 21397 df-opsr 21399 df-evls 21566 df-psr1 21635 df-ply1 21637 df-evls1 21765 |
This theorem is referenced by: evls1varpwval 32552 |
Copyright terms: Public domain | W3C validator |