Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evls1expd Structured version   Visualization version   GIF version

Theorem evls1expd 32639
Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd 21863. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
evls1expd.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1expd.k 𝐾 = (Baseβ€˜π‘†)
evls1expd.w π‘Š = (Poly1β€˜π‘ˆ)
evls1expd.u π‘ˆ = (𝑆 β†Ύs 𝑅)
evls1expd.b 𝐡 = (Baseβ€˜π‘Š)
evls1expd.s (πœ‘ β†’ 𝑆 ∈ CRing)
evls1expd.r (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))
evls1expd.1 ∧ = (.gβ€˜(mulGrpβ€˜π‘Š))
evls1expd.2 ↑ = (.gβ€˜(mulGrpβ€˜π‘†))
evls1expd.n (πœ‘ β†’ 𝑁 ∈ β„•0)
evls1expd.m (πœ‘ β†’ 𝑀 ∈ 𝐡)
evls1expd.c (πœ‘ β†’ 𝐢 ∈ 𝐾)
Assertion
Ref Expression
evls1expd (πœ‘ β†’ ((π‘„β€˜(𝑁 ∧ 𝑀))β€˜πΆ) = (𝑁 ↑ ((π‘„β€˜π‘€)β€˜πΆ)))

Proof of Theorem evls1expd
StepHypRef Expression
1 evls1expd.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
2 evls1expd.u . . . 4 π‘ˆ = (𝑆 β†Ύs 𝑅)
3 evls1expd.w . . . 4 π‘Š = (Poly1β€˜π‘ˆ)
4 eqid 2732 . . . 4 (mulGrpβ€˜π‘Š) = (mulGrpβ€˜π‘Š)
5 evls1expd.k . . . 4 𝐾 = (Baseβ€˜π‘†)
6 evls1expd.b . . . 4 𝐡 = (Baseβ€˜π‘Š)
7 evls1expd.1 . . . 4 ∧ = (.gβ€˜(mulGrpβ€˜π‘Š))
8 evls1expd.s . . . 4 (πœ‘ β†’ 𝑆 ∈ CRing)
9 evls1expd.r . . . 4 (πœ‘ β†’ 𝑅 ∈ (SubRingβ€˜π‘†))
10 evls1expd.n . . . 4 (πœ‘ β†’ 𝑁 ∈ β„•0)
11 evls1expd.m . . . 4 (πœ‘ β†’ 𝑀 ∈ 𝐡)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11evls1pw 21844 . . 3 (πœ‘ β†’ (π‘„β€˜(𝑁 ∧ 𝑀)) = (𝑁(.gβ€˜(mulGrpβ€˜(𝑆 ↑s 𝐾)))(π‘„β€˜π‘€)))
1312fveq1d 6893 . 2 (πœ‘ β†’ ((π‘„β€˜(𝑁 ∧ 𝑀))β€˜πΆ) = ((𝑁(.gβ€˜(mulGrpβ€˜(𝑆 ↑s 𝐾)))(π‘„β€˜π‘€))β€˜πΆ))
14 eqid 2732 . . 3 (𝑆 ↑s 𝐾) = (𝑆 ↑s 𝐾)
15 eqid 2732 . . 3 (Baseβ€˜(𝑆 ↑s 𝐾)) = (Baseβ€˜(𝑆 ↑s 𝐾))
16 eqid 2732 . . 3 (mulGrpβ€˜(𝑆 ↑s 𝐾)) = (mulGrpβ€˜(𝑆 ↑s 𝐾))
17 eqid 2732 . . 3 (mulGrpβ€˜π‘†) = (mulGrpβ€˜π‘†)
18 eqid 2732 . . 3 (.gβ€˜(mulGrpβ€˜(𝑆 ↑s 𝐾))) = (.gβ€˜(mulGrpβ€˜(𝑆 ↑s 𝐾)))
19 evls1expd.2 . . 3 ↑ = (.gβ€˜(mulGrpβ€˜π‘†))
208crngringd 20068 . . 3 (πœ‘ β†’ 𝑆 ∈ Ring)
215fvexi 6905 . . . 4 𝐾 ∈ V
2221a1i 11 . . 3 (πœ‘ β†’ 𝐾 ∈ V)
231, 5, 14, 2, 3evls1rhm 21840 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRingβ€˜π‘†)) β†’ 𝑄 ∈ (π‘Š RingHom (𝑆 ↑s 𝐾)))
248, 9, 23syl2anc 584 . . . . 5 (πœ‘ β†’ 𝑄 ∈ (π‘Š RingHom (𝑆 ↑s 𝐾)))
256, 15rhmf 20262 . . . . 5 (𝑄 ∈ (π‘Š RingHom (𝑆 ↑s 𝐾)) β†’ 𝑄:𝐡⟢(Baseβ€˜(𝑆 ↑s 𝐾)))
2624, 25syl 17 . . . 4 (πœ‘ β†’ 𝑄:𝐡⟢(Baseβ€˜(𝑆 ↑s 𝐾)))
2726, 11ffvelcdmd 7087 . . 3 (πœ‘ β†’ (π‘„β€˜π‘€) ∈ (Baseβ€˜(𝑆 ↑s 𝐾)))
28 evls1expd.c . . 3 (πœ‘ β†’ 𝐢 ∈ 𝐾)
2914, 15, 16, 17, 18, 19, 20, 22, 10, 27, 28pwsexpg 20141 . 2 (πœ‘ β†’ ((𝑁(.gβ€˜(mulGrpβ€˜(𝑆 ↑s 𝐾)))(π‘„β€˜π‘€))β€˜πΆ) = (𝑁 ↑ ((π‘„β€˜π‘€)β€˜πΆ)))
3013, 29eqtrd 2772 1 (πœ‘ β†’ ((π‘„β€˜(𝑁 ∧ 𝑀))β€˜πΆ) = (𝑁 ↑ ((π‘„β€˜π‘€)β€˜πΆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  β„•0cn0 12471  Basecbs 17143   β†Ύs cress 17172   ↑s cpws 17391  .gcmg 18949  mulGrpcmgp 19986  CRingccrg 20056   RingHom crh 20247  SubRingcsubrg 20314  Poly1cpl1 21700   evalSub1 ces1 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-ofr 7670  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-submnd 18671  df-grp 18821  df-minusg 18822  df-sbg 18823  df-mulg 18950  df-subg 19002  df-ghm 19089  df-cntz 19180  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-srg 20009  df-ring 20057  df-cring 20058  df-rnghom 20250  df-subrg 20316  df-lmod 20472  df-lss 20542  df-lsp 20582  df-assa 21407  df-asp 21408  df-ascl 21409  df-psr 21461  df-mvr 21462  df-mpl 21463  df-opsr 21465  df-evls 21634  df-psr1 21703  df-ply1 21705  df-evls1 21833
This theorem is referenced by:  evls1varpwval  32640
  Copyright terms: Public domain W3C validator