MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evls1expd Structured version   Visualization version   GIF version

Theorem evls1expd 22305
Description: Univariate polynomial evaluation builder for an exponential. See also evl1expd 22283. (Contributed by Thierry Arnoux, 24-Jan-2025.)
Hypotheses
Ref Expression
evls1expd.q 𝑄 = (𝑆 evalSub1 𝑅)
evls1expd.k 𝐾 = (Base‘𝑆)
evls1expd.w 𝑊 = (Poly1𝑈)
evls1expd.u 𝑈 = (𝑆s 𝑅)
evls1expd.b 𝐵 = (Base‘𝑊)
evls1expd.s (𝜑𝑆 ∈ CRing)
evls1expd.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evls1expd.1 = (.g‘(mulGrp‘𝑊))
evls1expd.2 = (.g‘(mulGrp‘𝑆))
evls1expd.n (𝜑𝑁 ∈ ℕ0)
evls1expd.m (𝜑𝑀𝐵)
evls1expd.c (𝜑𝐶𝐾)
Assertion
Ref Expression
evls1expd (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐶) = (𝑁 ((𝑄𝑀)‘𝐶)))

Proof of Theorem evls1expd
StepHypRef Expression
1 evls1expd.q . . . 4 𝑄 = (𝑆 evalSub1 𝑅)
2 evls1expd.u . . . 4 𝑈 = (𝑆s 𝑅)
3 evls1expd.w . . . 4 𝑊 = (Poly1𝑈)
4 eqid 2735 . . . 4 (mulGrp‘𝑊) = (mulGrp‘𝑊)
5 evls1expd.k . . . 4 𝐾 = (Base‘𝑆)
6 evls1expd.b . . . 4 𝐵 = (Base‘𝑊)
7 evls1expd.1 . . . 4 = (.g‘(mulGrp‘𝑊))
8 evls1expd.s . . . 4 (𝜑𝑆 ∈ CRing)
9 evls1expd.r . . . 4 (𝜑𝑅 ∈ (SubRing‘𝑆))
10 evls1expd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
11 evls1expd.m . . . 4 (𝜑𝑀𝐵)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11evls1pw 22264 . . 3 (𝜑 → (𝑄‘(𝑁 𝑀)) = (𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑀)))
1312fveq1d 6878 . 2 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐶) = ((𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑀))‘𝐶))
14 eqid 2735 . . 3 (𝑆s 𝐾) = (𝑆s 𝐾)
15 eqid 2735 . . 3 (Base‘(𝑆s 𝐾)) = (Base‘(𝑆s 𝐾))
16 eqid 2735 . . 3 (mulGrp‘(𝑆s 𝐾)) = (mulGrp‘(𝑆s 𝐾))
17 eqid 2735 . . 3 (mulGrp‘𝑆) = (mulGrp‘𝑆)
18 eqid 2735 . . 3 (.g‘(mulGrp‘(𝑆s 𝐾))) = (.g‘(mulGrp‘(𝑆s 𝐾)))
19 evls1expd.2 . . 3 = (.g‘(mulGrp‘𝑆))
208crngringd 20206 . . 3 (𝜑𝑆 ∈ Ring)
215fvexi 6890 . . . 4 𝐾 ∈ V
2221a1i 11 . . 3 (𝜑𝐾 ∈ V)
231, 5, 14, 2, 3evls1rhm 22260 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
248, 9, 23syl2anc 584 . . . . 5 (𝜑𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)))
256, 15rhmf 20445 . . . . 5 (𝑄 ∈ (𝑊 RingHom (𝑆s 𝐾)) → 𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
2624, 25syl 17 . . . 4 (𝜑𝑄:𝐵⟶(Base‘(𝑆s 𝐾)))
2726, 11ffvelcdmd 7075 . . 3 (𝜑 → (𝑄𝑀) ∈ (Base‘(𝑆s 𝐾)))
28 evls1expd.c . . 3 (𝜑𝐶𝐾)
2914, 15, 16, 17, 18, 19, 20, 22, 10, 27, 28pwsexpg 20289 . 2 (𝜑 → ((𝑁(.g‘(mulGrp‘(𝑆s 𝐾)))(𝑄𝑀))‘𝐶) = (𝑁 ((𝑄𝑀)‘𝐶)))
3013, 29eqtrd 2770 1 (𝜑 → ((𝑄‘(𝑁 𝑀))‘𝐶) = (𝑁 ((𝑄𝑀)‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  wf 6527  cfv 6531  (class class class)co 7405  0cn0 12501  Basecbs 17228  s cress 17251  s cpws 17460  .gcmg 19050  mulGrpcmgp 20100  CRingccrg 20194   RingHom crh 20429  SubRingcsubrg 20529  Poly1cpl1 22112   evalSub1 ces1 22251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-evls 22032  df-psr1 22115  df-ply1 22117  df-evls1 22253
This theorem is referenced by:  evls1varpwval  22306  2sqr3minply  33814  cos9thpiminplylem6  33821
  Copyright terms: Public domain W3C validator