| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > evlvvval | Structured version Visualization version GIF version | ||
| Description: Give a formula for the evaluation of a polynomial given assignments from variables to values. (Contributed by SN, 5-Mar-2025.) |
| Ref | Expression |
|---|---|
| evlvvval.q | ⊢ 𝑄 = (𝐼 eval 𝑅) |
| evlvvval.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| evlvvval.b | ⊢ 𝐵 = (Base‘𝑃) |
| evlvvval.d | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| evlvvval.k | ⊢ 𝐾 = (Base‘𝑅) |
| evlvvval.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| evlvvval.w | ⊢ ↑ = (.g‘𝑀) |
| evlvvval.x | ⊢ · = (.r‘𝑅) |
| evlvvval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| evlvvval.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evlvvval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| evlvvval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) |
| Ref | Expression |
|---|---|
| evlvvval | ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑅 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ ((𝐼 evalSub 𝑅)‘(Base‘𝑅)) = ((𝐼 evalSub 𝑅)‘(Base‘𝑅)) | |
| 2 | evlvvval.q | . . . 4 ⊢ 𝑄 = (𝐼 eval 𝑅) | |
| 3 | eqid 2734 | . . . 4 ⊢ (𝐼 mPoly (𝑅 ↾s (Base‘𝑅))) = (𝐼 mPoly (𝑅 ↾s (Base‘𝑅))) | |
| 4 | eqid 2734 | . . . 4 ⊢ (𝑅 ↾s (Base‘𝑅)) = (𝑅 ↾s (Base‘𝑅)) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Base‘(𝐼 mPoly (𝑅 ↾s (Base‘𝑅)))) = (Base‘(𝐼 mPoly (𝑅 ↾s (Base‘𝑅)))) | |
| 6 | evlvvval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 7 | evlvvval.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 8 | 7 | crngringd 20211 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | eqid 2734 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | 9 | subrgid 20541 | . . . . 5 ⊢ (𝑅 ∈ Ring → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 11 | 8, 10 | syl 17 | . . . 4 ⊢ (𝜑 → (Base‘𝑅) ∈ (SubRing‘𝑅)) |
| 12 | evlvvval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 13 | 9 | ressid 17267 | . . . . . . . . . 10 ⊢ (𝑅 ∈ CRing → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 14 | 7, 13 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → (𝑅 ↾s (Base‘𝑅)) = 𝑅) |
| 15 | 14 | oveq2d 7429 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s (Base‘𝑅))) = (𝐼 mPoly 𝑅)) |
| 16 | evlvvval.p | . . . . . . . 8 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 17 | 15, 16 | eqtr4di 2787 | . . . . . . 7 ⊢ (𝜑 → (𝐼 mPoly (𝑅 ↾s (Base‘𝑅))) = 𝑃) |
| 18 | 17 | fveq2d 6890 | . . . . . 6 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s (Base‘𝑅)))) = (Base‘𝑃)) |
| 19 | evlvvval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑃) | |
| 20 | 18, 19 | eqtr4di 2787 | . . . . 5 ⊢ (𝜑 → (Base‘(𝐼 mPoly (𝑅 ↾s (Base‘𝑅)))) = 𝐵) |
| 21 | 12, 20 | eleqtrrd 2836 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘(𝐼 mPoly (𝑅 ↾s (Base‘𝑅))))) |
| 22 | 1, 2, 3, 4, 5, 6, 7, 11, 21 | evlsevl 42544 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑅)‘(Base‘𝑅))‘𝐹) = (𝑄‘𝐹)) |
| 23 | 22 | fveq1d 6888 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑅)‘(Base‘𝑅))‘𝐹)‘𝐴) = ((𝑄‘𝐹)‘𝐴)) |
| 24 | evlvvval.d | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 25 | evlvvval.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 26 | evlvvval.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 27 | evlvvval.w | . . 3 ⊢ ↑ = (.g‘𝑀) | |
| 28 | evlvvval.x | . . 3 ⊢ · = (.r‘𝑅) | |
| 29 | evlvvval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ↑m 𝐼)) | |
| 30 | 1, 3, 5, 4, 24, 25, 26, 27, 28, 6, 7, 11, 21, 29 | evlsvvval 42536 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑅)‘(Base‘𝑅))‘𝐹)‘𝐴) = (𝑅 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| 31 | 23, 30 | eqtr3d 2771 | 1 ⊢ (𝜑 → ((𝑄‘𝐹)‘𝐴) = (𝑅 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘𝑏) · (𝑀 Σg (𝑖 ∈ 𝐼 ↦ ((𝑏‘𝑖) ↑ (𝐴‘𝑖)))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 ↦ cmpt 5205 ◡ccnv 5664 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ↑m cmap 8848 Fincfn 8967 ℕcn 12248 ℕ0cn0 12509 Basecbs 17229 ↾s cress 17252 .rcmulr 17274 Σg cgsu 17456 .gcmg 19054 mulGrpcmgp 20105 Ringcrg 20198 CRingccrg 20199 SubRingcsubrg 20537 mPoly cmpl 21880 evalSub ces 22044 eval cevl 22045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-hom 17297 df-cco 17298 df-0g 17457 df-gsum 17458 df-prds 17463 df-pws 17465 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-mhm 18765 df-submnd 18766 df-grp 18923 df-minusg 18924 df-sbg 18925 df-mulg 19055 df-subg 19110 df-ghm 19200 df-cntz 19304 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-srg 20152 df-ring 20200 df-cring 20201 df-rhm 20440 df-subrng 20514 df-subrg 20538 df-lmod 20828 df-lss 20898 df-lsp 20938 df-assa 21827 df-asp 21828 df-ascl 21829 df-psr 21883 df-mvr 21884 df-mpl 21885 df-evls 22046 df-evl 22047 |
| This theorem is referenced by: selvvvval 42558 evlselv 42560 |
| Copyright terms: Public domain | W3C validator |