Step | Hyp | Ref
| Expression |
1 | | evlsval3.i |
. . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
2 | | evlsval3.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ CRing) |
3 | | evlsval3.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
4 | | evlsval3.q |
. . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
5 | | evlsval3.p |
. . . 4
⊢ 𝑃 = (𝐼 mPoly 𝑈) |
6 | | eqid 2759 |
. . . 4
⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) |
7 | | evlsval3.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
8 | | evlsval3.t |
. . . 4
⊢ 𝑇 = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
9 | | evlsval3.k |
. . . 4
⊢ 𝐾 = (Base‘𝑆) |
10 | | eqid 2759 |
. . . 4
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
11 | | evlsval3.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) |
12 | | evlsval3.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval 20842 |
. . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))) |
14 | 1, 2, 3, 13 | syl3anc 1369 |
. 2
⊢ (𝜑 → 𝑄 = (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))) |
15 | | evlsval3.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑃) |
16 | | eqid 2759 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
17 | | evlsval3.d |
. . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
18 | | evlsval3.m |
. . . . 5
⊢ 𝑀 = (mulGrp‘𝑇) |
19 | | evlsval3.w |
. . . . 5
⊢ ↑ =
(.g‘𝑀) |
20 | | evlsval3.x |
. . . . 5
⊢ · =
(.r‘𝑇) |
21 | | evlsval3.e |
. . . . 5
⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) |
22 | 7 | subrgcrng 19600 |
. . . . . 6
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
23 | 2, 3, 22 | syl2anc 588 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ CRing) |
24 | | ovexd 7186 |
. . . . . 6
⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) |
25 | 8 | pwscrng 19431 |
. . . . . 6
⊢ ((𝑆 ∈ CRing ∧ (𝐾 ↑m 𝐼) ∈ V) → 𝑇 ∈ CRing) |
26 | 2, 24, 25 | syl2anc 588 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ CRing) |
27 | 9 | subrgss 19597 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) |
28 | 3, 27 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝐾) |
29 | 28 | resmptd 5881 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))) |
30 | 11, 29 | eqtr4id 2813 |
. . . . . 6
⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅)) |
31 | 2 | crngringd 19371 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Ring) |
32 | | eqid 2759 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) |
33 | 8, 9, 32 | pwsdiagrhm 19630 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) |
34 | 31, 24, 33 | syl2anc 588 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) |
35 | 7 | resrhm 19625 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) |
36 | 34, 3, 35 | syl2anc 588 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) |
37 | 30, 36 | eqeltrd 2853 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑈 RingHom 𝑇)) |
38 | 9 | fvexi 6673 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈ V |
39 | | elmapg 8430 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↔ 𝑎:𝐼⟶𝐾)) |
40 | 38, 1, 39 | sylancr 591 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑎 ∈ (𝐾 ↑m 𝐼) ↔ 𝑎:𝐼⟶𝐾)) |
41 | 40 | biimpa 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
42 | 41 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) |
43 | | simplr 769 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑥 ∈ 𝐼) |
44 | 42, 43 | ffvelrnd 6844 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑥) ∈ 𝐾) |
45 | 44 | fmpttd 6871 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾) |
46 | | ovexd 7186 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) |
47 | 8, 9, 16 | pwselbasb 16812 |
. . . . . . . 8
⊢ ((𝑆 ∈ CRing ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾)) |
48 | 2, 46, 47 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾)) |
49 | 45, 48 | mpbird 260 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇)) |
50 | 49, 12 | fmptd 6870 |
. . . . 5
⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑇)) |
51 | 5, 15, 16, 17, 18, 19, 20, 6, 21, 1, 23, 26, 37, 50, 10 | evlslem1 20838 |
. . . 4
⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑇) ∧ (𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)) |
52 | 51 | simp2d 1141 |
. . 3
⊢ (𝜑 → (𝐸 ∘ (algSc‘𝑃)) = 𝐹) |
53 | 51 | simp3d 1142 |
. . 3
⊢ (𝜑 → (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) |
54 | 51 | simp1d 1140 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ (𝑃 RingHom 𝑇)) |
55 | 5, 16, 10, 6, 1, 23, 26, 37, 50 | evlseu 20839 |
. . . 4
⊢ (𝜑 → ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) |
56 | | coeq1 5698 |
. . . . . . 7
⊢ (𝑓 = 𝐸 → (𝑓 ∘ (algSc‘𝑃)) = (𝐸 ∘ (algSc‘𝑃))) |
57 | 56 | eqeq1d 2761 |
. . . . . 6
⊢ (𝑓 = 𝐸 → ((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ↔ (𝐸 ∘ (algSc‘𝑃)) = 𝐹)) |
58 | | coeq1 5698 |
. . . . . . 7
⊢ (𝑓 = 𝐸 → (𝑓 ∘ (𝐼 mVar 𝑈)) = (𝐸 ∘ (𝐼 mVar 𝑈))) |
59 | 58 | eqeq1d 2761 |
. . . . . 6
⊢ (𝑓 = 𝐸 → ((𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺 ↔ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)) |
60 | 57, 59 | anbi12d 634 |
. . . . 5
⊢ (𝑓 = 𝐸 → (((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ ((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))) |
61 | 60 | riota2 7134 |
. . . 4
⊢ ((𝐸 ∈ (𝑃 RingHom 𝑇) ∧ ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)) |
62 | 54, 55, 61 | syl2anc 588 |
. . 3
⊢ (𝜑 → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)) |
63 | 52, 53, 62 | mpbi2and 712 |
. 2
⊢ (𝜑 → (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸) |
64 | 14, 63 | eqtrd 2794 |
1
⊢ (𝜑 → 𝑄 = 𝐸) |