Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsval3 Structured version   Visualization version   GIF version

Theorem evlsval3 42552
Description: Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.)
Hypotheses
Ref Expression
evlsval3.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval3.p 𝑃 = (𝐼 mPoly 𝑈)
evlsval3.b 𝐵 = (Base‘𝑃)
evlsval3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsval3.k 𝐾 = (Base‘𝑆)
evlsval3.u 𝑈 = (𝑆s 𝑅)
evlsval3.t 𝑇 = (𝑆s (𝐾m 𝐼))
evlsval3.m 𝑀 = (mulGrp‘𝑇)
evlsval3.w = (.g𝑀)
evlsval3.x · = (.r𝑇)
evlsval3.e 𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
evlsval3.f 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
evlsval3.g 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
evlsval3.i (𝜑𝐼𝑉)
evlsval3.s (𝜑𝑆 ∈ CRing)
evlsval3.r (𝜑𝑅 ∈ (SubRing‘𝑆))
Assertion
Ref Expression
evlsval3 (𝜑𝑄 = 𝐸)
Distinct variable groups:   𝜑,𝑎,𝑥   𝜑,𝑏,𝑝   𝑃,𝑏,𝑝   𝐵,𝑏,𝑝   𝐷,𝑏,𝑝   𝐾,𝑎,𝑥   𝑈,𝑏,,𝑝   𝑇,𝑏,𝑝   𝑥,𝑇   𝑀,𝑏,𝑝   ,𝑏,𝑝   · ,𝑏,𝑝   𝐹,𝑏,𝑝   𝐺,𝑏,𝑝   𝐼,𝑎,𝑥   𝐼,𝑏,,𝑝   𝑆,𝑎,𝑥   𝑥,𝑅
Allowed substitution hints:   𝜑()   𝐵(𝑥,,𝑎)   𝐷(𝑥,,𝑎)   𝑃(𝑥,,𝑎)   𝑄(𝑥,,𝑝,𝑎,𝑏)   𝑅(,𝑝,𝑎,𝑏)   𝑆(,𝑝,𝑏)   𝑇(,𝑎)   · (𝑥,,𝑎)   𝑈(𝑥,𝑎)   𝐸(𝑥,,𝑝,𝑎,𝑏)   (𝑥,,𝑎)   𝐹(𝑥,,𝑎)   𝐺(𝑥,,𝑎)   𝐾(,𝑝,𝑏)   𝑀(𝑥,,𝑎)   𝑉(𝑥,,𝑝,𝑎,𝑏)

Proof of Theorem evlsval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 evlsval3.i . . 3 (𝜑𝐼𝑉)
2 evlsval3.s . . 3 (𝜑𝑆 ∈ CRing)
3 evlsval3.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsval3.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsval3.p . . . 4 𝑃 = (𝐼 mPoly 𝑈)
6 eqid 2729 . . . 4 (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈)
7 evlsval3.u . . . 4 𝑈 = (𝑆s 𝑅)
8 evlsval3.t . . . 4 𝑇 = (𝑆s (𝐾m 𝐼))
9 evlsval3.k . . . 4 𝐾 = (Base‘𝑆)
10 eqid 2729 . . . 4 (algSc‘𝑃) = (algSc‘𝑃)
11 evlsval3.f . . . 4 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
12 evlsval3.g . . . 4 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval 22010 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
141, 2, 3, 13syl3anc 1373 . 2 (𝜑𝑄 = (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
15 evlsval3.b . . . . 5 𝐵 = (Base‘𝑃)
16 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
17 evlsval3.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
18 evlsval3.m . . . . 5 𝑀 = (mulGrp‘𝑇)
19 evlsval3.w . . . . 5 = (.g𝑀)
20 evlsval3.x . . . . 5 · = (.r𝑇)
21 evlsval3.e . . . . 5 𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
227subrgcrng 20479 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
232, 3, 22syl2anc 584 . . . . 5 (𝜑𝑈 ∈ CRing)
24 ovexd 7388 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
258pwscrng 20230 . . . . . 6 ((𝑆 ∈ CRing ∧ (𝐾m 𝐼) ∈ V) → 𝑇 ∈ CRing)
262, 24, 25syl2anc 584 . . . . 5 (𝜑𝑇 ∈ CRing)
279subrgss 20476 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
283, 27syl 17 . . . . . . . 8 (𝜑𝑅𝐾)
2928resmptd 5995 . . . . . . 7 (𝜑 → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥})))
3011, 29eqtr4id 2783 . . . . . 6 (𝜑𝐹 = ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅))
312crngringd 20150 . . . . . . . 8 (𝜑𝑆 ∈ Ring)
32 eqid 2729 . . . . . . . . 9 (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) = (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥}))
338, 9, 32pwsdiagrhm 20511 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝐾m 𝐼) ∈ V) → (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
3431, 24, 33syl2anc 584 . . . . . . 7 (𝜑 → (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
357resrhm 20505 . . . . . . 7 (((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3634, 3, 35syl2anc 584 . . . . . 6 (𝜑 → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3730, 36eqeltrd 2828 . . . . 5 (𝜑𝐹 ∈ (𝑈 RingHom 𝑇))
389fvexi 6840 . . . . . . . . . . . 12 𝐾 ∈ V
39 elmapg 8773 . . . . . . . . . . . 12 ((𝐾 ∈ V ∧ 𝐼𝑉) → (𝑎 ∈ (𝐾m 𝐼) ↔ 𝑎:𝐼𝐾))
4038, 1, 39sylancr 587 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (𝐾m 𝐼) ↔ 𝑎:𝐼𝐾))
4140biimpa 476 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐾m 𝐼)) → 𝑎:𝐼𝐾)
4241adantlr 715 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → 𝑎:𝐼𝐾)
43 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → 𝑥𝐼)
4442, 43ffvelcdmd 7023 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → (𝑎𝑥) ∈ 𝐾)
4544fmpttd 7053 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾)
46 ovexd 7388 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾m 𝐼) ∈ V)
478, 9, 16pwselbasb 17411 . . . . . . . 8 ((𝑆 ∈ CRing ∧ (𝐾m 𝐼) ∈ V) → ((𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾))
482, 46, 47syl2an2r 685 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾))
4945, 48mpbird 257 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇))
5049, 12fmptd 7052 . . . . 5 (𝜑𝐺:𝐼⟶(Base‘𝑇))
515, 15, 16, 17, 18, 19, 20, 6, 21, 1, 23, 26, 37, 50, 10evlslem1 22006 . . . 4 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑇) ∧ (𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))
5251simp2d 1143 . . 3 (𝜑 → (𝐸 ∘ (algSc‘𝑃)) = 𝐹)
5351simp3d 1144 . . 3 (𝜑 → (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)
5451simp1d 1142 . . . 4 (𝜑𝐸 ∈ (𝑃 RingHom 𝑇))
555, 16, 10, 6, 1, 23, 26, 37, 50evlseu 22007 . . . 4 (𝜑 → ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))
56 coeq1 5804 . . . . . . 7 (𝑓 = 𝐸 → (𝑓 ∘ (algSc‘𝑃)) = (𝐸 ∘ (algSc‘𝑃)))
5756eqeq1d 2731 . . . . . 6 (𝑓 = 𝐸 → ((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ↔ (𝐸 ∘ (algSc‘𝑃)) = 𝐹))
58 coeq1 5804 . . . . . . 7 (𝑓 = 𝐸 → (𝑓 ∘ (𝐼 mVar 𝑈)) = (𝐸 ∘ (𝐼 mVar 𝑈)))
5958eqeq1d 2731 . . . . . 6 (𝑓 = 𝐸 → ((𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺 ↔ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))
6057, 59anbi12d 632 . . . . 5 (𝑓 = 𝐸 → (((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ ((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
6160riota2 7335 . . . 4 ((𝐸 ∈ (𝑃 RingHom 𝑇) ∧ ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸))
6254, 55, 61syl2anc 584 . . 3 (𝜑 → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸))
6352, 53, 62mpbi2and 712 . 2 (𝜑 → (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)
6414, 63eqtrd 2764 1 (𝜑𝑄 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3343  {crab 3396  Vcvv 3438  wss 3905  {csn 4579  cmpt 5176   × cxp 5621  ccnv 5622  cres 5625  cima 5626  ccom 5627  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  f cof 7615  m cmap 8760  Fincfn 8879  cn 12147  0cn0 12403  Basecbs 17139  s cress 17160  .rcmulr 17181   Σg cgsu 17363  s cpws 17369  .gcmg 18965  mulGrpcmgp 20044  Ringcrg 20137  CRingccrg 20138   RingHom crh 20373  SubRingcsubrg 20473  algSccascl 21778   mVar cmvr 21831   mPoly cmpl 21832   evalSub ces 21996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-fz 13430  df-fzo 13577  df-seq 13928  df-hash 14257  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-hom 17204  df-cco 17205  df-0g 17364  df-gsum 17365  df-prds 17370  df-pws 17372  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-mhm 18676  df-submnd 18677  df-grp 18834  df-minusg 18835  df-sbg 18836  df-mulg 18966  df-subg 19021  df-ghm 19111  df-cntz 19215  df-cmn 19680  df-abl 19681  df-mgp 20045  df-rng 20057  df-ur 20086  df-srg 20091  df-ring 20139  df-cring 20140  df-rhm 20376  df-subrng 20450  df-subrg 20474  df-lmod 20784  df-lss 20854  df-lsp 20894  df-assa 21779  df-asp 21780  df-ascl 21781  df-psr 21835  df-mvr 21836  df-mpl 21837  df-evls 21998
This theorem is referenced by:  evlsvval  42553
  Copyright terms: Public domain W3C validator