Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  evlsval3 Structured version   Visualization version   GIF version

Theorem evlsval3 42520
Description: Give a formula for the polynomial evaluation homomorphism. (Contributed by SN, 26-Jul-2024.)
Hypotheses
Ref Expression
evlsval3.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval3.p 𝑃 = (𝐼 mPoly 𝑈)
evlsval3.b 𝐵 = (Base‘𝑃)
evlsval3.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
evlsval3.k 𝐾 = (Base‘𝑆)
evlsval3.u 𝑈 = (𝑆s 𝑅)
evlsval3.t 𝑇 = (𝑆s (𝐾m 𝐼))
evlsval3.m 𝑀 = (mulGrp‘𝑇)
evlsval3.w = (.g𝑀)
evlsval3.x · = (.r𝑇)
evlsval3.e 𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
evlsval3.f 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
evlsval3.g 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
evlsval3.i (𝜑𝐼𝑉)
evlsval3.s (𝜑𝑆 ∈ CRing)
evlsval3.r (𝜑𝑅 ∈ (SubRing‘𝑆))
Assertion
Ref Expression
evlsval3 (𝜑𝑄 = 𝐸)
Distinct variable groups:   𝜑,𝑎,𝑥   𝜑,𝑏,𝑝   𝑃,𝑏,𝑝   𝐵,𝑏,𝑝   𝐷,𝑏,𝑝   𝐾,𝑎,𝑥   𝑈,𝑏,,𝑝   𝑇,𝑏,𝑝   𝑥,𝑇   𝑀,𝑏,𝑝   ,𝑏,𝑝   · ,𝑏,𝑝   𝐹,𝑏,𝑝   𝐺,𝑏,𝑝   𝐼,𝑎,𝑥   𝐼,𝑏,,𝑝   𝑆,𝑎,𝑥   𝑥,𝑅
Allowed substitution hints:   𝜑()   𝐵(𝑥,,𝑎)   𝐷(𝑥,,𝑎)   𝑃(𝑥,,𝑎)   𝑄(𝑥,,𝑝,𝑎,𝑏)   𝑅(,𝑝,𝑎,𝑏)   𝑆(,𝑝,𝑏)   𝑇(,𝑎)   · (𝑥,,𝑎)   𝑈(𝑥,𝑎)   𝐸(𝑥,,𝑝,𝑎,𝑏)   (𝑥,,𝑎)   𝐹(𝑥,,𝑎)   𝐺(𝑥,,𝑎)   𝐾(,𝑝,𝑏)   𝑀(𝑥,,𝑎)   𝑉(𝑥,,𝑝,𝑎,𝑏)

Proof of Theorem evlsval3
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 evlsval3.i . . 3 (𝜑𝐼𝑉)
2 evlsval3.s . . 3 (𝜑𝑆 ∈ CRing)
3 evlsval3.r . . 3 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsval3.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 evlsval3.p . . . 4 𝑃 = (𝐼 mPoly 𝑈)
6 eqid 2729 . . . 4 (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈)
7 evlsval3.u . . . 4 𝑈 = (𝑆s 𝑅)
8 evlsval3.t . . . 4 𝑇 = (𝑆s (𝐾m 𝐼))
9 evlsval3.k . . . 4 𝐾 = (Base‘𝑆)
10 eqid 2729 . . . 4 (algSc‘𝑃) = (algSc‘𝑃)
11 evlsval3.f . . . 4 𝐹 = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥}))
12 evlsval3.g . . . 4 𝐺 = (𝑥𝐼 ↦ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval 21969 . . 3 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
141, 2, 3, 13syl3anc 1373 . 2 (𝜑𝑄 = (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
15 evlsval3.b . . . . 5 𝐵 = (Base‘𝑃)
16 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
17 evlsval3.d . . . . 5 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
18 evlsval3.m . . . . 5 𝑀 = (mulGrp‘𝑇)
19 evlsval3.w . . . . 5 = (.g𝑀)
20 evlsval3.x . . . . 5 · = (.r𝑇)
21 evlsval3.e . . . . 5 𝐸 = (𝑝𝐵 ↦ (𝑇 Σg (𝑏𝐷 ↦ ((𝐹‘(𝑝𝑏)) · (𝑀 Σg (𝑏f 𝐺))))))
227subrgcrng 20460 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
232, 3, 22syl2anc 584 . . . . 5 (𝜑𝑈 ∈ CRing)
24 ovexd 7404 . . . . . 6 (𝜑 → (𝐾m 𝐼) ∈ V)
258pwscrng 20211 . . . . . 6 ((𝑆 ∈ CRing ∧ (𝐾m 𝐼) ∈ V) → 𝑇 ∈ CRing)
262, 24, 25syl2anc 584 . . . . 5 (𝜑𝑇 ∈ CRing)
279subrgss 20457 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐾)
283, 27syl 17 . . . . . . . 8 (𝜑𝑅𝐾)
2928resmptd 6000 . . . . . . 7 (𝜑 → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥𝑅 ↦ ((𝐾m 𝐼) × {𝑥})))
3011, 29eqtr4id 2783 . . . . . 6 (𝜑𝐹 = ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅))
312crngringd 20131 . . . . . . . 8 (𝜑𝑆 ∈ Ring)
32 eqid 2729 . . . . . . . . 9 (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) = (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥}))
338, 9, 32pwsdiagrhm 20492 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝐾m 𝐼) ∈ V) → (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
3431, 24, 33syl2anc 584 . . . . . . 7 (𝜑 → (𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
357resrhm 20486 . . . . . . 7 (((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3634, 3, 35syl2anc 584 . . . . . 6 (𝜑 → ((𝑥𝐾 ↦ ((𝐾m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3730, 36eqeltrd 2828 . . . . 5 (𝜑𝐹 ∈ (𝑈 RingHom 𝑇))
389fvexi 6854 . . . . . . . . . . . 12 𝐾 ∈ V
39 elmapg 8789 . . . . . . . . . . . 12 ((𝐾 ∈ V ∧ 𝐼𝑉) → (𝑎 ∈ (𝐾m 𝐼) ↔ 𝑎:𝐼𝐾))
4038, 1, 39sylancr 587 . . . . . . . . . . 11 (𝜑 → (𝑎 ∈ (𝐾m 𝐼) ↔ 𝑎:𝐼𝐾))
4140biimpa 476 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝐾m 𝐼)) → 𝑎:𝐼𝐾)
4241adantlr 715 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → 𝑎:𝐼𝐾)
43 simplr 768 . . . . . . . . 9 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → 𝑥𝐼)
4442, 43ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑥𝐼) ∧ 𝑎 ∈ (𝐾m 𝐼)) → (𝑎𝑥) ∈ 𝐾)
4544fmpttd 7069 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾)
46 ovexd 7404 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐾m 𝐼) ∈ V)
478, 9, 16pwselbasb 17427 . . . . . . . 8 ((𝑆 ∈ CRing ∧ (𝐾m 𝐼) ∈ V) → ((𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾))
482, 46, 47syl2an2r 685 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)):(𝐾m 𝐼)⟶𝐾))
4945, 48mpbird 257 . . . . . 6 ((𝜑𝑥𝐼) → (𝑎 ∈ (𝐾m 𝐼) ↦ (𝑎𝑥)) ∈ (Base‘𝑇))
5049, 12fmptd 7068 . . . . 5 (𝜑𝐺:𝐼⟶(Base‘𝑇))
515, 15, 16, 17, 18, 19, 20, 6, 21, 1, 23, 26, 37, 50, 10evlslem1 21965 . . . 4 (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑇) ∧ (𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))
5251simp2d 1143 . . 3 (𝜑 → (𝐸 ∘ (algSc‘𝑃)) = 𝐹)
5351simp3d 1144 . . 3 (𝜑 → (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)
5451simp1d 1142 . . . 4 (𝜑𝐸 ∈ (𝑃 RingHom 𝑇))
555, 16, 10, 6, 1, 23, 26, 37, 50evlseu 21966 . . . 4 (𝜑 → ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))
56 coeq1 5811 . . . . . . 7 (𝑓 = 𝐸 → (𝑓 ∘ (algSc‘𝑃)) = (𝐸 ∘ (algSc‘𝑃)))
5756eqeq1d 2731 . . . . . 6 (𝑓 = 𝐸 → ((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ↔ (𝐸 ∘ (algSc‘𝑃)) = 𝐹))
58 coeq1 5811 . . . . . . 7 (𝑓 = 𝐸 → (𝑓 ∘ (𝐼 mVar 𝑈)) = (𝐸 ∘ (𝐼 mVar 𝑈)))
5958eqeq1d 2731 . . . . . 6 (𝑓 = 𝐸 → ((𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺 ↔ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))
6057, 59anbi12d 632 . . . . 5 (𝑓 = 𝐸 → (((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ ((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)))
6160riota2 7351 . . . 4 ((𝐸 ∈ (𝑃 RingHom 𝑇) ∧ ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸))
6254, 55, 61syl2anc 584 . . 3 (𝜑 → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸))
6352, 53, 62mpbi2and 712 . 2 (𝜑 → (𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)
6414, 63eqtrd 2764 1 (𝜑𝑄 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3349  {crab 3402  Vcvv 3444  wss 3911  {csn 4585  cmpt 5183   × cxp 5629  ccnv 5630  cres 5633  cima 5634  ccom 5635  wf 6495  cfv 6499  crio 7325  (class class class)co 7369  f cof 7631  m cmap 8776  Fincfn 8895  cn 12162  0cn0 12418  Basecbs 17155  s cress 17176  .rcmulr 17197   Σg cgsu 17379  s cpws 17385  .gcmg 18975  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119   RingHom crh 20354  SubRingcsubrg 20454  algSccascl 21737   mVar cmvr 21790   mPoly cmpl 21791   evalSub ces 21955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19121  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-rhm 20357  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-evls 21957
This theorem is referenced by:  evlsvval  42521
  Copyright terms: Public domain W3C validator