| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | evlsval3.i | . . 3
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 2 |  | evlsval3.s | . . 3
⊢ (𝜑 → 𝑆 ∈ CRing) | 
| 3 |  | evlsval3.r | . . 3
⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | 
| 4 |  | evlsval3.q | . . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | 
| 5 |  | evlsval3.p | . . . 4
⊢ 𝑃 = (𝐼 mPoly 𝑈) | 
| 6 |  | eqid 2736 | . . . 4
⊢ (𝐼 mVar 𝑈) = (𝐼 mVar 𝑈) | 
| 7 |  | evlsval3.u | . . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑅) | 
| 8 |  | evlsval3.t | . . . 4
⊢ 𝑇 = (𝑆 ↑s (𝐾 ↑m 𝐼)) | 
| 9 |  | evlsval3.k | . . . 4
⊢ 𝐾 = (Base‘𝑆) | 
| 10 |  | eqid 2736 | . . . 4
⊢
(algSc‘𝑃) =
(algSc‘𝑃) | 
| 11 |  | evlsval3.f | . . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) | 
| 12 |  | evlsval3.g | . . . 4
⊢ 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥))) | 
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval 22111 | . . 3
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))) | 
| 14 | 1, 2, 3, 13 | syl3anc 1372 | . 2
⊢ (𝜑 → 𝑄 = (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺))) | 
| 15 |  | evlsval3.b | . . . . 5
⊢ 𝐵 = (Base‘𝑃) | 
| 16 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 17 |  | evlsval3.d | . . . . 5
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} | 
| 18 |  | evlsval3.m | . . . . 5
⊢ 𝑀 = (mulGrp‘𝑇) | 
| 19 |  | evlsval3.w | . . . . 5
⊢  ↑ =
(.g‘𝑀) | 
| 20 |  | evlsval3.x | . . . . 5
⊢  · =
(.r‘𝑇) | 
| 21 |  | evlsval3.e | . . . . 5
⊢ 𝐸 = (𝑝 ∈ 𝐵 ↦ (𝑇 Σg (𝑏 ∈ 𝐷 ↦ ((𝐹‘(𝑝‘𝑏)) · (𝑀 Σg (𝑏 ∘f ↑ 𝐺)))))) | 
| 22 | 7 | subrgcrng 20576 | . . . . . 6
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) | 
| 23 | 2, 3, 22 | syl2anc 584 | . . . . 5
⊢ (𝜑 → 𝑈 ∈ CRing) | 
| 24 |  | ovexd 7467 | . . . . . 6
⊢ (𝜑 → (𝐾 ↑m 𝐼) ∈ V) | 
| 25 | 8 | pwscrng 20324 | . . . . . 6
⊢ ((𝑆 ∈ CRing ∧ (𝐾 ↑m 𝐼) ∈ V) → 𝑇 ∈ CRing) | 
| 26 | 2, 24, 25 | syl2anc 584 | . . . . 5
⊢ (𝜑 → 𝑇 ∈ CRing) | 
| 27 | 9 | subrgss 20573 | . . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐾) | 
| 28 | 3, 27 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝐾) | 
| 29 | 28 | resmptd 6057 | . . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ((𝐾 ↑m 𝐼) × {𝑥}))) | 
| 30 | 11, 29 | eqtr4id 2795 | . . . . . 6
⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅)) | 
| 31 | 2 | crngringd 20244 | . . . . . . . 8
⊢ (𝜑 → 𝑆 ∈ Ring) | 
| 32 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) | 
| 33 | 8, 9, 32 | pwsdiagrhm 20608 | . . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) | 
| 34 | 31, 24, 33 | syl2anc 584 | . . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) | 
| 35 | 7 | resrhm 20602 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) | 
| 36 | 34, 3, 35 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → ((𝑥 ∈ 𝐾 ↦ ((𝐾 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) | 
| 37 | 30, 36 | eqeltrd 2840 | . . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝑈 RingHom 𝑇)) | 
| 38 | 9 | fvexi 6919 | . . . . . . . . . . . 12
⊢ 𝐾 ∈ V | 
| 39 |  | elmapg 8880 | . . . . . . . . . . . 12
⊢ ((𝐾 ∈ V ∧ 𝐼 ∈ 𝑉) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↔ 𝑎:𝐼⟶𝐾)) | 
| 40 | 38, 1, 39 | sylancr 587 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑎 ∈ (𝐾 ↑m 𝐼) ↔ 𝑎:𝐼⟶𝐾)) | 
| 41 | 40 | biimpa 476 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) | 
| 42 | 41 | adantlr 715 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑎:𝐼⟶𝐾) | 
| 43 |  | simplr 768 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → 𝑥 ∈ 𝐼) | 
| 44 | 42, 43 | ffvelcdmd 7104 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑎 ∈ (𝐾 ↑m 𝐼)) → (𝑎‘𝑥) ∈ 𝐾) | 
| 45 | 44 | fmpttd 7134 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾) | 
| 46 |  | ovexd 7467 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐾 ↑m 𝐼) ∈ V) | 
| 47 | 8, 9, 16 | pwselbasb 17534 | . . . . . . . 8
⊢ ((𝑆 ∈ CRing ∧ (𝐾 ↑m 𝐼) ∈ V) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾)) | 
| 48 | 2, 46, 47 | syl2an2r 685 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)):(𝐾 ↑m 𝐼)⟶𝐾)) | 
| 49 | 45, 48 | mpbird 257 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑎 ∈ (𝐾 ↑m 𝐼) ↦ (𝑎‘𝑥)) ∈ (Base‘𝑇)) | 
| 50 | 49, 12 | fmptd 7133 | . . . . 5
⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑇)) | 
| 51 | 5, 15, 16, 17, 18, 19, 20, 6, 21, 1, 23, 26, 37, 50, 10 | evlslem1 22107 | . . . 4
⊢ (𝜑 → (𝐸 ∈ (𝑃 RingHom 𝑇) ∧ (𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)) | 
| 52 | 51 | simp2d 1143 | . . 3
⊢ (𝜑 → (𝐸 ∘ (algSc‘𝑃)) = 𝐹) | 
| 53 | 51 | simp3d 1144 | . . 3
⊢ (𝜑 → (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) | 
| 54 | 51 | simp1d 1142 | . . . 4
⊢ (𝜑 → 𝐸 ∈ (𝑃 RingHom 𝑇)) | 
| 55 | 5, 16, 10, 6, 1, 23, 26, 37, 50 | evlseu 22108 | . . . 4
⊢ (𝜑 → ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) | 
| 56 |  | coeq1 5867 | . . . . . . 7
⊢ (𝑓 = 𝐸 → (𝑓 ∘ (algSc‘𝑃)) = (𝐸 ∘ (algSc‘𝑃))) | 
| 57 | 56 | eqeq1d 2738 | . . . . . 6
⊢ (𝑓 = 𝐸 → ((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ↔ (𝐸 ∘ (algSc‘𝑃)) = 𝐹)) | 
| 58 |  | coeq1 5867 | . . . . . . 7
⊢ (𝑓 = 𝐸 → (𝑓 ∘ (𝐼 mVar 𝑈)) = (𝐸 ∘ (𝐼 mVar 𝑈))) | 
| 59 | 58 | eqeq1d 2738 | . . . . . 6
⊢ (𝑓 = 𝐸 → ((𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺 ↔ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺)) | 
| 60 | 57, 59 | anbi12d 632 | . . . . 5
⊢ (𝑓 = 𝐸 → (((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ ((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺))) | 
| 61 | 60 | riota2 7414 | . . . 4
⊢ ((𝐸 ∈ (𝑃 RingHom 𝑇) ∧ ∃!𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)) | 
| 62 | 54, 55, 61 | syl2anc 584 | . . 3
⊢ (𝜑 → (((𝐸 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝐸 ∘ (𝐼 mVar 𝑈)) = 𝐺) ↔ (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸)) | 
| 63 | 52, 53, 62 | mpbi2and 712 | . 2
⊢ (𝜑 → (℩𝑓 ∈ (𝑃 RingHom 𝑇)((𝑓 ∘ (algSc‘𝑃)) = 𝐹 ∧ (𝑓 ∘ (𝐼 mVar 𝑈)) = 𝐺)) = 𝐸) | 
| 64 | 14, 63 | eqtrd 2776 | 1
⊢ (𝜑 → 𝑄 = 𝐸) |