Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlsrgmulrssin | Structured version Visualization version GIF version |
Description: In a commutative ring, the product of two ideals is a subset of their intersection. (Contributed by Thierry Arnoux, 17-Jun-2024.) |
Ref | Expression |
---|---|
idlsrgmulrssin.1 | ⊢ 𝑆 = (IDLsrg‘𝑅) |
idlsrgmulrssin.2 | ⊢ 𝐵 = (LIdeal‘𝑅) |
idlsrgmulrssin.3 | ⊢ ⊗ = (.r‘𝑆) |
idlsrgmulrssin.4 | ⊢ (𝜑 → 𝑅 ∈ CRing) |
idlsrgmulrssin.5 | ⊢ (𝜑 → 𝐼 ∈ 𝐵) |
idlsrgmulrssin.6 | ⊢ (𝜑 → 𝐽 ∈ 𝐵) |
Ref | Expression |
---|---|
idlsrgmulrssin | ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlsrgmulrssin.1 | . . 3 ⊢ 𝑆 = (IDLsrg‘𝑅) | |
2 | idlsrgmulrssin.2 | . . 3 ⊢ 𝐵 = (LIdeal‘𝑅) | |
3 | idlsrgmulrssin.3 | . . 3 ⊢ ⊗ = (.r‘𝑆) | |
4 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
5 | idlsrgmulrssin.4 | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | idlsrgmulrssin.5 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝐵) | |
7 | idlsrgmulrssin.6 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐵) | |
8 | 1, 2, 3, 4, 5, 6, 7 | idlsrgmulrss1 31894 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐼) |
9 | 5 | crngringd 19883 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | 1, 2, 3, 4, 9, 6, 7 | idlsrgmulrss2 31895 | . 2 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ 𝐽) |
11 | 8, 10 | ssind 4178 | 1 ⊢ (𝜑 → (𝐼 ⊗ 𝐽) ⊆ (𝐼 ∩ 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∩ cin 3896 ⊆ wss 3897 ‘cfv 6473 (class class class)co 7329 .rcmulr 17052 CRingccrg 19871 LIdealclidl 20530 IDLsrgcidlsrg 31883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-tp 4577 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-nn 12067 df-2 12129 df-3 12130 df-4 12131 df-5 12132 df-6 12133 df-7 12134 df-8 12135 df-9 12136 df-n0 12327 df-z 12413 df-dec 12531 df-uz 12676 df-fz 13333 df-struct 16937 df-sets 16954 df-slot 16972 df-ndx 16984 df-base 17002 df-ress 17031 df-plusg 17064 df-mulr 17065 df-sca 17067 df-vsca 17068 df-ip 17069 df-tset 17070 df-ple 17071 df-0g 17241 df-mgm 18415 df-sgrp 18464 df-mnd 18475 df-grp 18668 df-minusg 18669 df-sbg 18670 df-subg 18840 df-lsm 19329 df-cmn 19475 df-mgp 19808 df-ur 19825 df-ring 19872 df-cring 19873 df-subrg 20119 df-lmod 20223 df-lss 20292 df-lsp 20332 df-sra 20532 df-rgmod 20533 df-lidl 20534 df-rsp 20535 df-idlsrg 31884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |