| Step | Hyp | Ref
| Expression |
| 1 | | selvmul.p |
. . . . . 6
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 2 | | eqid 2737 |
. . . . . 6
⊢ (𝐼 mPoly 𝑇) = (𝐼 mPoly 𝑇) |
| 3 | | selvmul.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
| 4 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(𝐼 mPoly
𝑇)) = (Base‘(𝐼 mPoly 𝑇)) |
| 5 | | selvmul.1 |
. . . . . 6
⊢ · =
(.r‘𝑃) |
| 6 | | eqid 2737 |
. . . . . 6
⊢
(.r‘(𝐼 mPoly 𝑇)) = (.r‘(𝐼 mPoly 𝑇)) |
| 7 | | selvmul.u |
. . . . . . 7
⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
| 8 | | selvmul.t |
. . . . . . 7
⊢ 𝑇 = (𝐽 mPoly 𝑈) |
| 9 | | eqid 2737 |
. . . . . . 7
⊢
(algSc‘𝑇) =
(algSc‘𝑇) |
| 10 | | eqid 2737 |
. . . . . . 7
⊢
((algSc‘𝑇)
∘ (algSc‘𝑈)) =
((algSc‘𝑇) ∘
(algSc‘𝑈)) |
| 11 | | selvmul.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 12 | 11 | difexd 5331 |
. . . . . . 7
⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
| 13 | | selvmul.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| 14 | 11, 13 | ssexd 5324 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ V) |
| 15 | | selvmul.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 16 | 7, 8, 9, 10, 12, 14, 15 | selvcllem2 42588 |
. . . . . 6
⊢ (𝜑 → ((algSc‘𝑇) ∘ (algSc‘𝑈)) ∈ (𝑅 RingHom 𝑇)) |
| 17 | | selvmul.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 18 | | selvmul.g |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 19 | 1, 2, 3, 4, 5, 6, 16, 17, 18 | rhmcomulmpl 22386 |
. . . . 5
⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ (𝐹 · 𝐺)) = ((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))) |
| 20 | 19 | fveq2d 6910 |
. . . 4
⊢ (𝜑 → ((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ (𝐹 · 𝐺))) = ((𝐼 eval 𝑇)‘((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺)))) |
| 21 | 20 | fveq1d 6908 |
. . 3
⊢ (𝜑 → (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ (𝐹 · 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 22 | | eqid 2737 |
. . . . 5
⊢ (𝐼 eval 𝑇) = (𝐼 eval 𝑇) |
| 23 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 24 | | selvmul.2 |
. . . . 5
⊢ ∙ =
(.r‘𝑇) |
| 25 | 7, 12, 15 | mplcrngd 42557 |
. . . . . 6
⊢ (𝜑 → 𝑈 ∈ CRing) |
| 26 | 8, 14, 25 | mplcrngd 42557 |
. . . . 5
⊢ (𝜑 → 𝑇 ∈ CRing) |
| 27 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
| 28 | 7, 8, 9, 23, 27, 11, 15, 13 | selvcllem5 42592 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) ∈ ((Base‘𝑇) ↑m 𝐼)) |
| 29 | | rhmghm 20484 |
. . . . . . . 8
⊢
(((algSc‘𝑇)
∘ (algSc‘𝑈))
∈ (𝑅 RingHom 𝑇) → ((algSc‘𝑇) ∘ (algSc‘𝑈)) ∈ (𝑅 GrpHom 𝑇)) |
| 30 | | ghmmhm 19244 |
. . . . . . . 8
⊢
(((algSc‘𝑇)
∘ (algSc‘𝑈))
∈ (𝑅 GrpHom 𝑇) → ((algSc‘𝑇) ∘ (algSc‘𝑈)) ∈ (𝑅 MndHom 𝑇)) |
| 31 | 16, 29, 30 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((algSc‘𝑇) ∘ (algSc‘𝑈)) ∈ (𝑅 MndHom 𝑇)) |
| 32 | 1, 2, 3, 4, 31, 17 | mhmcompl 22384 |
. . . . . 6
⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly 𝑇))) |
| 33 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 34 | 32, 33 | jca 511 |
. . . . 5
⊢ (𝜑 → ((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly 𝑇)) ∧ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
| 35 | 1, 2, 3, 4, 31, 18 | mhmcompl 22384 |
. . . . . 6
⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺) ∈ (Base‘(𝐼 mPoly 𝑇))) |
| 36 | | eqidd 2738 |
. . . . . 6
⊢ (𝜑 → (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 37 | 35, 36 | jca 511 |
. . . . 5
⊢ (𝜑 → ((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺) ∈ (Base‘(𝐼 mPoly 𝑇)) ∧ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
| 38 | 22, 2, 23, 4, 6, 24, 11, 26, 28, 34, 37 | evlmulval 42586 |
. . . 4
⊢ (𝜑 → (((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺)) ∈ (Base‘(𝐼 mPoly 𝑇)) ∧ (((𝐼 eval 𝑇)‘((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∙ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))))) |
| 39 | 38 | simprd 495 |
. . 3
⊢ (𝜑 → (((𝐼 eval 𝑇)‘((((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)(.r‘(𝐼 mPoly 𝑇))(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∙ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
| 40 | 21, 39 | eqtrd 2777 |
. 2
⊢ (𝜑 → (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ (𝐹 · 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = ((((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∙ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
| 41 | 1, 11, 15 | mplcrngd 42557 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ CRing) |
| 42 | 41 | crngringd 20243 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 43 | 3, 5, 42, 17, 18 | ringcld 20257 |
. . 3
⊢ (𝜑 → (𝐹 · 𝐺) ∈ 𝐵) |
| 44 | 1, 3, 7, 8, 9, 10,
15, 13, 43 | selvval2 42594 |
. 2
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘(𝐹 · 𝐺)) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ (𝐹 · 𝐺)))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 45 | 1, 3, 7, 8, 9, 10,
15, 13, 17 | selvval2 42594 |
. . 3
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 46 | 1, 3, 7, 8, 9, 10,
15, 13, 18 | selvval2 42594 |
. . 3
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐺) = (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 47 | 45, 46 | oveq12d 7449 |
. 2
⊢ (𝜑 → ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∙ (((𝐼 selectVars 𝑅)‘𝐽)‘𝐺)) = ((((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∙ (((𝐼 eval 𝑇)‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐺))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))))) |
| 48 | 40, 44, 47 | 3eqtr4d 2787 |
1
⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘(𝐹 · 𝐺)) = ((((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∙ (((𝐼 selectVars 𝑅)‘𝐽)‘𝐺))) |