Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1annidl Structured version   Visualization version   GIF version

Theorem ply1annidl 33707
Description: The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annidl.o 𝑂 = (𝑅 evalSub1 𝑆)
ply1annidl.p 𝑃 = (Poly1‘(𝑅s 𝑆))
ply1annidl.b 𝐵 = (Base‘𝑅)
ply1annidl.r (𝜑𝑅 ∈ CRing)
ply1annidl.s (𝜑𝑆 ∈ (SubRing‘𝑅))
ply1annidl.a (𝜑𝐴𝐵)
ply1annidl.0 0 = (0g𝑅)
ply1annidl.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
Assertion
Ref Expression
ply1annidl (𝜑𝑄 ∈ (LIdeal‘𝑃))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem ply1annidl
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 ply1annidl.o . . 3 𝑂 = (𝑅 evalSub1 𝑆)
2 ply1annidl.p . . 3 𝑃 = (Poly1‘(𝑅s 𝑆))
3 ply1annidl.b . . 3 𝐵 = (Base‘𝑅)
4 ply1annidl.r . . 3 (𝜑𝑅 ∈ CRing)
5 ply1annidl.s . . 3 (𝜑𝑆 ∈ (SubRing‘𝑅))
6 ply1annidl.a . . 3 (𝜑𝐴𝐵)
7 ply1annidl.0 . . 3 0 = (0g𝑅)
8 ply1annidl.q . . 3 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
9 eqid 2731 . . 3 (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
101, 2, 3, 4, 5, 6, 7, 8, 9ply1annidllem 33706 . 2 (𝜑𝑄 = ((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) “ { 0 }))
11 eqid 2731 . . . 4 (Base‘𝑃) = (Base‘𝑃)
121, 2, 3, 11, 4, 5, 6, 9evls1maprhm 22286 . . 3 (𝜑 → (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅))
134crngringd 20159 . . . 4 (𝜑𝑅 ∈ Ring)
14 eqid 2731 . . . . 5 (LIdeal‘𝑅) = (LIdeal‘𝑅)
1514, 7lidl0 21162 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅))
1613, 15syl 17 . . 3 (𝜑 → { 0 } ∈ (LIdeal‘𝑅))
17 eqid 2731 . . . 4 (LIdeal‘𝑃) = (LIdeal‘𝑃)
1817rhmpreimaidl 21209 . . 3 (((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅) ∧ { 0 } ∈ (LIdeal‘𝑅)) → ((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃))
1912, 16, 18syl2anc 584 . 2 (𝜑 → ((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃))
2010, 19eqeltrd 2831 1 (𝜑𝑄 ∈ (LIdeal‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  {csn 4571  cmpt 5167  ccnv 5610  dom cdm 5611  cima 5614  cfv 6476  (class class class)co 7341  Basecbs 17115  s cress 17136  0gc0g 17338  Ringcrg 20146  CRingccrg 20147   RingHom crh 20382  SubRingcsubrg 20479  LIdealclidl 21138  Poly1cpl1 22084   evalSub1 ces1 22223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-ofr 7606  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-fzo 13550  df-seq 13904  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-0g 17340  df-gsum 17341  df-prds 17346  df-pws 17348  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-ghm 19120  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-srg 20100  df-ring 20148  df-cring 20149  df-rhm 20385  df-subrng 20456  df-subrg 20480  df-lmod 20790  df-lss 20860  df-lsp 20900  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-assa 21785  df-asp 21786  df-ascl 21787  df-psr 21841  df-mvr 21842  df-mpl 21843  df-opsr 21845  df-evls 22004  df-evl 22005  df-psr1 22087  df-vr1 22088  df-ply1 22089  df-coe1 22090  df-evls1 22225  df-evl1 22226
This theorem is referenced by:  ply1annig1p  33709  minplycl  33711  minplymindeg  33713  minplyann  33714  minplyirredlem  33715  minplyirred  33716  irngnminplynz  33717  minplym1p  33718  minplynzm1p  33719  irredminply  33721
  Copyright terms: Public domain W3C validator