![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annidl | Structured version Visualization version GIF version |
Description: The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
Ref | Expression |
---|---|
ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) |
ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
ply1annidl.0 | ⊢ 0 = (0g‘𝑅) |
ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
Ref | Expression |
---|---|
ply1annidl | ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annidl.o | . . 3 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
2 | ply1annidl.p | . . 3 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
3 | ply1annidl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
4 | ply1annidl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | ply1annidl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
6 | ply1annidl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
7 | ply1annidl.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
8 | ply1annidl.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
9 | eqid 2736 | . . 3 ⊢ (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ply1annidllem 33725 | . 2 ⊢ (𝜑 → 𝑄 = (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 })) |
11 | eqid 2736 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
12 | 1, 2, 3, 11, 4, 5, 6, 9 | evls1maprhm 22370 | . . 3 ⊢ (𝜑 → (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅)) |
13 | 4 | crngringd 20239 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
14 | eqid 2736 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
15 | 14, 7 | lidl0 21232 | . . . 4 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → { 0 } ∈ (LIdeal‘𝑅)) |
17 | eqid 2736 | . . . 4 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
18 | 17 | rhmpreimaidl 21279 | . . 3 ⊢ (((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅) ∧ { 0 } ∈ (LIdeal‘𝑅)) → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃)) |
19 | 12, 16, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃)) |
20 | 10, 19 | eqeltrd 2840 | 1 ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3435 {csn 4624 ↦ cmpt 5223 ◡ccnv 5682 dom cdm 5683 “ cima 5686 ‘cfv 6559 (class class class)co 7429 Basecbs 17243 ↾s cress 17270 0gc0g 17480 Ringcrg 20226 CRingccrg 20227 RingHom crh 20461 SubRingcsubrg 20561 LIdealclidl 21208 Poly1cpl1 22168 evalSub1 ces1 22307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-cnex 11207 ax-resscn 11208 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-mulcom 11215 ax-addass 11216 ax-mulass 11217 ax-distr 11218 ax-i2m1 11219 ax-1ne0 11220 ax-1rid 11221 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 ax-pre-lttri 11225 ax-pre-lttrn 11226 ax-pre-ltadd 11227 ax-pre-mulgt0 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4906 df-int 4945 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5224 df-tr 5258 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6319 df-ord 6385 df-on 6386 df-lim 6387 df-suc 6388 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-isom 6568 df-riota 7386 df-ov 7432 df-oprab 7433 df-mpo 7434 df-of 7694 df-ofr 7695 df-om 7884 df-1st 8010 df-2nd 8011 df-supp 8182 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8741 df-map 8864 df-pm 8865 df-ixp 8934 df-en 8982 df-dom 8983 df-sdom 8984 df-fin 8985 df-fsupp 9398 df-sup 9478 df-oi 9546 df-card 9975 df-pnf 11293 df-mnf 11294 df-xr 11295 df-ltxr 11296 df-le 11297 df-sub 11490 df-neg 11491 df-nn 12263 df-2 12325 df-3 12326 df-4 12327 df-5 12328 df-6 12329 df-7 12330 df-8 12331 df-9 12332 df-n0 12523 df-z 12610 df-dec 12730 df-uz 12875 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17244 df-ress 17271 df-plusg 17306 df-mulr 17307 df-sca 17309 df-vsca 17310 df-ip 17311 df-tset 17312 df-ple 17313 df-ds 17315 df-hom 17317 df-cco 17318 df-0g 17482 df-gsum 17483 df-prds 17488 df-pws 17490 df-mre 17625 df-mrc 17626 df-acs 17628 df-mgm 18649 df-sgrp 18728 df-mnd 18744 df-mhm 18792 df-submnd 18793 df-grp 18950 df-minusg 18951 df-sbg 18952 df-mulg 19082 df-subg 19137 df-ghm 19227 df-cntz 19331 df-cmn 19796 df-abl 19797 df-mgp 20134 df-rng 20146 df-ur 20175 df-srg 20180 df-ring 20228 df-cring 20229 df-rhm 20464 df-subrng 20538 df-subrg 20562 df-lmod 20852 df-lss 20922 df-lsp 20962 df-sra 21164 df-rgmod 21165 df-lidl 21210 df-assa 21865 df-asp 21866 df-ascl 21867 df-psr 21921 df-mvr 21922 df-mpl 21923 df-opsr 21925 df-evls 22090 df-evl 22091 df-psr1 22171 df-vr1 22172 df-ply1 22173 df-coe1 22174 df-evls1 22309 df-evl1 22310 |
This theorem is referenced by: ply1annig1p 33728 minplycl 33730 minplymindeg 33732 minplyann 33733 minplyirredlem 33734 minplyirred 33735 irngnminplynz 33736 minplym1p 33737 irredminply 33738 |
Copyright terms: Public domain | W3C validator |