| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annidl | Structured version Visualization version GIF version | ||
| Description: The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annidl.0 | ⊢ 0 = (0g‘𝑅) |
| ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| Ref | Expression |
|---|---|
| ply1annidl | ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annidl.o | . . 3 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 2 | ply1annidl.p | . . 3 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 3 | ply1annidl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | ply1annidl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 5 | ply1annidl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 6 | ply1annidl.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 7 | ply1annidl.0 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 8 | ply1annidl.q | . . 3 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 9 | eqid 2734 | . . 3 ⊢ (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | ply1annidllem 33686 | . 2 ⊢ (𝜑 → 𝑄 = (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 })) |
| 11 | eqid 2734 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 12 | 1, 2, 3, 11, 4, 5, 6, 9 | evls1maprhm 22329 | . . 3 ⊢ (𝜑 → (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅)) |
| 13 | 4 | crngringd 20212 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | eqid 2734 | . . . . 5 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 15 | 14, 7 | lidl0 21203 | . . . 4 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑅)) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ (𝜑 → { 0 } ∈ (LIdeal‘𝑅)) |
| 17 | eqid 2734 | . . . 4 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 18 | 17 | rhmpreimaidl 21250 | . . 3 ⊢ (((𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ∈ (𝑃 RingHom 𝑅) ∧ { 0 } ∈ (LIdeal‘𝑅)) → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃)) |
| 19 | 12, 16, 18 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡(𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) “ { 0 }) ∈ (LIdeal‘𝑃)) |
| 20 | 10, 19 | eqeltrd 2833 | 1 ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 {csn 4606 ↦ cmpt 5205 ◡ccnv 5664 dom cdm 5665 “ cima 5668 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 ↾s cress 17253 0gc0g 17456 Ringcrg 20199 CRingccrg 20200 RingHom crh 20438 SubRingcsubrg 20538 LIdealclidl 21179 Poly1cpl1 22127 evalSub1 ces1 22266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-ofr 7680 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-pm 8851 df-ixp 8920 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-ip 17292 df-tset 17293 df-ple 17294 df-ds 17296 df-hom 17298 df-cco 17299 df-0g 17458 df-gsum 17459 df-prds 17464 df-pws 17466 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-ghm 19201 df-cntz 19305 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-srg 20153 df-ring 20201 df-cring 20202 df-rhm 20441 df-subrng 20515 df-subrg 20539 df-lmod 20829 df-lss 20899 df-lsp 20939 df-sra 21141 df-rgmod 21142 df-lidl 21181 df-assa 21828 df-asp 21829 df-ascl 21830 df-psr 21884 df-mvr 21885 df-mpl 21886 df-opsr 21888 df-evls 22047 df-evl 22048 df-psr1 22130 df-vr1 22131 df-ply1 22132 df-coe1 22133 df-evls1 22268 df-evl1 22269 |
| This theorem is referenced by: ply1annig1p 33689 minplycl 33691 minplymindeg 33693 minplyann 33694 minplyirredlem 33695 minplyirred 33696 irngnminplynz 33697 minplym1p 33698 minplynzm1p 33699 irredminply 33701 |
| Copyright terms: Public domain | W3C validator |