![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr2N | Structured version Visualization version GIF version |
Description: Less-than and covers equivalence in a Hilbert lattice. (chcv2 32103 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvr2.b | β’ π΅ = (BaseβπΎ) |
cvr2.s | β’ < = (ltβπΎ) |
cvr2.j | β’ β¨ = (joinβπΎ) |
cvr2.c | β’ πΆ = ( β βπΎ) |
cvr2.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
cvr2N | β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (π < (π β¨ π) β ππΆ(π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38736 | . . . 4 β’ (πΎ β HL β πΎ β Lat) | |
2 | 1 | 3ad2ant1 1130 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β πΎ β Lat) |
3 | simp2 1134 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β π β π΅) | |
4 | cvr2.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
5 | cvr2.a | . . . . 5 β’ π΄ = (AtomsβπΎ) | |
6 | 4, 5 | atbase 38662 | . . . 4 β’ (π β π΄ β π β π΅) |
7 | 6 | 3ad2ant3 1132 | . . 3 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β π β π΅) |
8 | eqid 2724 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
9 | cvr2.s | . . . 4 β’ < = (ltβπΎ) | |
10 | cvr2.j | . . . 4 β’ β¨ = (joinβπΎ) | |
11 | 4, 8, 9, 10 | latnle 18434 | . . 3 β’ ((πΎ β Lat β§ π β π΅ β§ π β π΅) β (Β¬ π(leβπΎ)π β π < (π β¨ π))) |
12 | 2, 3, 7, 11 | syl3anc 1368 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (Β¬ π(leβπΎ)π β π < (π β¨ π))) |
13 | cvr2.c | . . 3 β’ πΆ = ( β βπΎ) | |
14 | 4, 8, 10, 13, 5 | cvr1 38784 | . 2 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (Β¬ π(leβπΎ)π β ππΆ(π β¨ π))) |
15 | 12, 14 | bitr3d 281 | 1 β’ ((πΎ β HL β§ π β π΅ β§ π β π΄) β (π < (π β¨ π) β ππΆ(π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5139 βcfv 6534 (class class class)co 7402 Basecbs 17149 lecple 17209 ltcplt 18269 joincjn 18272 Latclat 18392 β ccvr 38635 Atomscatm 38636 HLchlt 38723 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-proset 18256 df-poset 18274 df-plt 18291 df-lub 18307 df-glb 18308 df-join 18309 df-meet 18310 df-p0 18386 df-lat 18393 df-clat 18460 df-oposet 38549 df-ol 38551 df-oml 38552 df-covers 38639 df-ats 38640 df-atl 38671 df-cvlat 38695 df-hlat 38724 |
This theorem is referenced by: cvrval4N 38788 |
Copyright terms: Public domain | W3C validator |