![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr2N | Structured version Visualization version GIF version |
Description: Less-than and covers equivalence in a Hilbert lattice. (chcv2 32385 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvr2.b | ⊢ 𝐵 = (Base‘𝐾) |
cvr2.s | ⊢ < = (lt‘𝐾) |
cvr2.j | ⊢ ∨ = (join‘𝐾) |
cvr2.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvr2N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39345 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Lat) |
3 | simp2 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
4 | cvr2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | cvr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 39271 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 6 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
8 | eqid 2735 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
9 | cvr2.s | . . . 4 ⊢ < = (lt‘𝐾) | |
10 | cvr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 8, 9, 10 | latnle 18531 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑃))) |
12 | 2, 3, 7, 11 | syl3anc 1370 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑃))) |
13 | cvr2.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
14 | 4, 8, 10, 13, 5 | cvr1 39393 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
15 | 12, 14 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 ltcplt 18366 joincjn 18369 Latclat 18489 ⋖ ccvr 39244 Atomscatm 39245 HLchlt 39332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18352 df-poset 18371 df-plt 18388 df-lub 18404 df-glb 18405 df-join 18406 df-meet 18407 df-p0 18483 df-lat 18490 df-clat 18557 df-oposet 39158 df-ol 39160 df-oml 39161 df-covers 39248 df-ats 39249 df-atl 39280 df-cvlat 39304 df-hlat 39333 |
This theorem is referenced by: cvrval4N 39397 |
Copyright terms: Public domain | W3C validator |