Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvr2N Structured version   Visualization version   GIF version

Theorem cvr2N 37451
Description: Less-than and covers equivalence in a Hilbert lattice. (chcv2 30746 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cvr2.b 𝐵 = (Base‘𝐾)
cvr2.s < = (lt‘𝐾)
cvr2.j = (join‘𝐾)
cvr2.c 𝐶 = ( ⋖ ‘𝐾)
cvr2.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvr2N ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (𝑋 < (𝑋 𝑃) ↔ 𝑋𝐶(𝑋 𝑃)))

Proof of Theorem cvr2N
StepHypRef Expression
1 hllat 37403 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1131 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝐾 ∈ Lat)
3 simp2 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝑋𝐵)
4 cvr2.b . . . . 5 𝐵 = (Base‘𝐾)
5 cvr2.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5atbase 37329 . . . 4 (𝑃𝐴𝑃𝐵)
763ad2ant3 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → 𝑃𝐵)
8 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
9 cvr2.s . . . 4 < = (lt‘𝐾)
10 cvr2.j . . . 4 = (join‘𝐾)
114, 8, 9, 10latnle 18219 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑃𝐵) → (¬ 𝑃(le‘𝐾)𝑋𝑋 < (𝑋 𝑃)))
122, 3, 7, 11syl3anc 1369 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋 < (𝑋 𝑃)))
13 cvr2.c . . 3 𝐶 = ( ⋖ ‘𝐾)
144, 8, 10, 13, 5cvr1 37450 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐶(𝑋 𝑃)))
1512, 14bitr3d 280 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑃𝐴) → (𝑋 < (𝑋 𝑃) ↔ 𝑋𝐶(𝑋 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1085   = wceq 1537  wcel 2101   class class class wbr 5077  cfv 6447  (class class class)co 7295  Basecbs 16940  lecple 16997  ltcplt 18054  joincjn 18057  Latclat 18177  ccvr 37302  Atomscatm 37303  HLchlt 37390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-rep 5212  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-proset 18041  df-poset 18059  df-plt 18076  df-lub 18092  df-glb 18093  df-join 18094  df-meet 18095  df-p0 18171  df-lat 18178  df-clat 18245  df-oposet 37216  df-ol 37218  df-oml 37219  df-covers 37306  df-ats 37307  df-atl 37338  df-cvlat 37362  df-hlat 37391
This theorem is referenced by:  cvrval4N  37454
  Copyright terms: Public domain W3C validator