![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvr2N | Structured version Visualization version GIF version |
Description: Less-than and covers equivalence in a Hilbert lattice. (chcv2 31127 analog.) (Contributed by NM, 7-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvr2.b | ⊢ 𝐵 = (Base‘𝐾) |
cvr2.s | ⊢ < = (lt‘𝐾) |
cvr2.j | ⊢ ∨ = (join‘𝐾) |
cvr2.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
cvr2.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvr2N | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37757 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝐾 ∈ Lat) |
3 | simp2 1138 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
4 | cvr2.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
5 | cvr2.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 37683 | . . . 4 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 6 | 3ad2ant3 1136 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
8 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
9 | cvr2.s | . . . 4 ⊢ < = (lt‘𝐾) | |
10 | cvr2.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 8, 9, 10 | latnle 18322 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑃))) |
12 | 2, 3, 7, 11 | syl3anc 1372 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋 < (𝑋 ∨ 𝑃))) |
13 | cvr2.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
14 | 4, 8, 10, 13, 5 | cvr1 37805 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (¬ 𝑃(le‘𝐾)𝑋 ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
15 | 12, 14 | bitr3d 281 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴) → (𝑋 < (𝑋 ∨ 𝑃) ↔ 𝑋𝐶(𝑋 ∨ 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 class class class wbr 5104 ‘cfv 6494 (class class class)co 7352 Basecbs 17043 lecple 17100 ltcplt 18157 joincjn 18160 Latclat 18280 ⋖ ccvr 37656 Atomscatm 37657 HLchlt 37744 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7665 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-ral 3064 df-rex 3073 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-iun 4955 df-br 5105 df-opab 5167 df-mpt 5188 df-id 5530 df-xp 5638 df-rel 5639 df-cnv 5640 df-co 5641 df-dm 5642 df-rn 5643 df-res 5644 df-ima 5645 df-iota 6446 df-fun 6496 df-fn 6497 df-f 6498 df-f1 6499 df-fo 6500 df-f1o 6501 df-fv 6502 df-riota 7308 df-ov 7355 df-oprab 7356 df-proset 18144 df-poset 18162 df-plt 18179 df-lub 18195 df-glb 18196 df-join 18197 df-meet 18198 df-p0 18274 df-lat 18281 df-clat 18348 df-oposet 37570 df-ol 37572 df-oml 37573 df-covers 37660 df-ats 37661 df-atl 37692 df-cvlat 37716 df-hlat 37745 |
This theorem is referenced by: cvrval4N 37809 |
Copyright terms: Public domain | W3C validator |