MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Structured version   Visualization version   GIF version

Theorem ostth2 26146
Description: - Lemma for ostth 26148: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
Assertion
Ref Expression
ostth2 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦,𝜑   𝐽,𝑎,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎,𝑞,𝑦   𝑅,𝑎,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞,𝑎)   𝑅(𝑥)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑎)   𝑁(𝑞,𝑎)

Proof of Theorem ostth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
2 ostth.1 . . . . . . . 8 (𝜑𝐹𝐴)
3 ostth2.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘2))
4 eluz2b2 12315 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
53, 4sylib 219 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
65simpld 495 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
7 nnq 12356 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
86, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℚ)
9 qabsabv.a . . . . . . . . 9 𝐴 = (AbsVal‘𝑄)
10 qrng.q . . . . . . . . . 10 𝑄 = (ℂflds ℚ)
1110qrngbas 26128 . . . . . . . . 9 ℚ = (Base‘𝑄)
129, 11abvcl 19531 . . . . . . . 8 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
132, 8, 12syl2anc 584 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 ostth2.3 . . . . . . 7 (𝜑 → 1 < (𝐹𝑁))
1513, 14rplogcld 25144 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ+)
166nnred 11647 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
175simprd 496 . . . . . . 7 (𝜑 → 1 < 𝑁)
1816, 17rplogcld 25144 . . . . . 6 (𝜑 → (log‘𝑁) ∈ ℝ+)
1915, 18rpdivcld 12443 . . . . 5 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ∈ ℝ+)
201, 19eqeltrid 2922 . . . 4 (𝜑𝑅 ∈ ℝ+)
2120rpred 12426 . . 3 (𝜑𝑅 ∈ ℝ)
2220rpgt0d 12429 . . 3 (𝜑 → 0 < 𝑅)
236nnnn0d 11949 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2410, 9qabvle 26134 . . . . . . . . 9 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
252, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑁) ≤ 𝑁)
266nnne0d 11681 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
2710qrng0 26130 . . . . . . . . . . . 12 0 = (0g𝑄)
289, 11, 27abvgt0 19535 . . . . . . . . . . 11 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹𝑁))
292, 8, 26, 28syl3anc 1365 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑁))
3013, 29elrpd 12423 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ+)
3130reeflogd 25139 . . . . . . . 8 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
326nnrpd 12424 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
3332reeflogd 25139 . . . . . . . 8 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
3425, 31, 333brtr4d 5095 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁)))
3515rpred 12426 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
3632relogcld 25138 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
37 efle 15466 . . . . . . . 8 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3835, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3934, 38mpbird 258 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ≤ (log‘𝑁))
4018rpcnd 12428 . . . . . . 7 (𝜑 → (log‘𝑁) ∈ ℂ)
4140mulid1d 10652 . . . . . 6 (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁))
4239, 41breqtrrd 5091 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1))
43 1red 10636 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4435, 43, 18ledivmuld 12479 . . . . 5 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1)))
4542, 44mpbird 258 . . . 4 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1)
461, 45eqbrtrid 5098 . . 3 (𝜑𝑅 ≤ 1)
47 0xr 10682 . . . 4 0 ∈ ℝ*
48 1re 10635 . . . 4 1 ∈ ℝ
49 elioc2 12794 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1)))
5047, 48, 49mp2an 688 . . 3 (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1))
5121, 22, 46, 50syl3anbrc 1337 . 2 (𝜑𝑅 ∈ (0(,]1))
5210, 9qabsabv 26138 . . . 4 (abs ↾ ℚ) ∈ 𝐴
53 fvres 6688 . . . . . . . 8 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
5453oveq1d 7165 . . . . . . 7 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅))
5554mpteq2ia 5154 . . . . . 6 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
5655eqcomi 2835 . . . . 5 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅))
579, 11, 56abvcxp 26124 . . . 4 (((abs ↾ ℚ) ∈ 𝐴𝑅 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
5852, 51, 57sylancr 587 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
59 eluzelz 12247 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
60 zq 12348 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
61 fveq2 6669 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
6261oveq1d 7165 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅))
63 eqid 2826 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
64 ovex 7183 . . . . . . 7 ((abs‘𝑧)↑𝑐𝑅) ∈ V
6562, 63, 64fvmpt 6767 . . . . . 6 (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6659, 60, 653syl 18 . . . . 5 (𝑧 ∈ (ℤ‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6766adantl 482 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
68 simpr 485 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ (ℤ‘2))
69 eluz2b2 12315 . . . . . . . . 9 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7068, 69sylib 219 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7170simpld 495 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ)
7271nnred 11647 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ)
7371nnnn0d 11949 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ0)
7473nn0ge0d 11952 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 ≤ 𝑧)
7572, 74absidd 14777 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (abs‘𝑧) = 𝑧)
7675oveq1d 7165 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((abs‘𝑧)↑𝑐𝑅) = (𝑧𝑐𝑅))
7772recnd 10663 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℂ)
7871nnne0d 11681 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ≠ 0)
7920rpcnd 12428 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
8079adantr 481 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℂ)
8177, 78, 80cxpefd 25227 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧))))
82 padic.j . . . . . . . . . . 11 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
83 ostth.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
842adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝐹𝐴)
853adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
8614adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑁))
87 eqid 2826 . . . . . . . . . . 11 ((log‘(𝐹𝑧)) / (log‘𝑧)) = ((log‘(𝐹𝑧)) / (log‘𝑧))
88 eqid 2826 . . . . . . . . . . 11 if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧)) = if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧))
89 eqid 2826 . . . . . . . . . . 11 ((log‘𝑁) / (log‘𝑧)) = ((log‘𝑁) / (log‘𝑧))
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 26145 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑧) ∧ 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧))))
9190simprd 496 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)))
9290simpld 495 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑧))
93 eqid 2826 . . . . . . . . . . 11 if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁)) = if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁))
94 eqid 2826 . . . . . . . . . . 11 ((log‘𝑧) / (log‘𝑁)) = ((log‘𝑧) / (log‘𝑁))
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 26145 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑁) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅))
9695simprd 496 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)
9721adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℝ)
9859adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
9998, 60syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℚ)
1009, 11abvcl 19531 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ) → (𝐹𝑧) ∈ ℝ)
10184, 99, 100syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ)
1029, 11, 27abvgt0 19535 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹𝑧))
10384, 99, 78, 102syl3anc 1365 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (𝐹𝑧))
104101, 103elrpd 12423 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ+)
105104relogcld 25138 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℝ)
10671nnrpd 12424 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ+)
107106relogcld 25138 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℝ)
108 ef0 15439 . . . . . . . . . . . . . 14 (exp‘0) = 1
10970simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < 𝑧)
110106reeflogd 25139 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘𝑧)) = 𝑧)
111109, 110breqtrrd 5091 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (exp‘(log‘𝑧)))
112108, 111eqbrtrid 5098 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘0) < (exp‘(log‘𝑧)))
113 0re 10637 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 eflt 15465 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
115113, 107, 114sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
116112, 115mpbird 258 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (log‘𝑧))
117116gt0ne0d 11198 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ≠ 0)
118105, 107, 117redivcld 11462 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ∈ ℝ)
11997, 118letri3d 10776 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)))
12091, 96, 119mpbir2and 709 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)))
121120oveq1d 7165 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)))
122105recnd 10663 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℂ)
123107recnd 10663 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℂ)
124122, 123, 117divcan1d 11411 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹𝑧)))
125121, 124eqtrd 2861 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (log‘(𝐹𝑧)))
126125fveq2d 6673 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(𝑅 · (log‘𝑧))) = (exp‘(log‘(𝐹𝑧))))
127104reeflogd 25139 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘(𝐹𝑧))) = (𝐹𝑧))
12881, 126, 1273eqtrd 2865 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (𝐹𝑧))
12967, 76, 1283eqtrrd 2866 . . 3 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧))
13010, 9, 2, 58, 129ostthlem1 26136 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
131 oveq2 7158 . . . 4 (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅))
132131mpteq2dv 5159 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
133132rspceeqv 3642 . 2 ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
13451, 130, 133syl2anc 584 1 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021  wrex 3144  ifcif 4470   class class class wbr 5063  cmpt 5143  cres 5556  cfv 6354  (class class class)co 7150  cc 10529  cr 10530  0cc0 10531  1c1 10532   · cmul 10536  *cxr 10668   < clt 10669  cle 10670  -cneg 10865   / cdiv 11291  cn 11632  2c2 11686  0cn0 11891  cz 11975  cuz 12237  cq 12342  +crp 12384  (,]cioc 12734  cexp 13424  abscabs 14588  expce 15410  cprime 16010   pCnt cpc 16168  s cress 16479  AbsValcabv 19523  fldccnfld 20480  logclog 25070  𝑐ccxp 25071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7574  df-1st 7685  df-2nd 7686  df-supp 7827  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-2o 8099  df-oadd 8102  df-er 8284  df-map 8403  df-pm 8404  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ioo 12737  df-ioc 12738  df-ico 12739  df-icc 12740  df-fz 12888  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13425  df-fac 13629  df-bc 13658  df-hash 13686  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18051  df-minusg 18052  df-mulg 18170  df-subg 18221  df-cntz 18392  df-cmn 18844  df-mgp 19176  df-ur 19188  df-ring 19235  df-cring 19236  df-oppr 19309  df-dvdsr 19327  df-unit 19328  df-invr 19358  df-dvr 19369  df-drng 19440  df-subrg 19469  df-abv 19524  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-fbas 20477  df-fg 20478  df-cnfld 20481  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-cld 21562  df-ntr 21563  df-cls 21564  df-nei 21641  df-lp 21679  df-perf 21680  df-cn 21770  df-cnp 21771  df-haus 21858  df-tx 22105  df-hmeo 22298  df-fil 22389  df-fm 22481  df-flim 22482  df-flf 22483  df-xms 22864  df-ms 22865  df-tms 22866  df-cncf 23420  df-limc 24398  df-dv 24399  df-log 25072  df-cxp 25073
This theorem is referenced by:  ostth  26148
  Copyright terms: Public domain W3C validator