MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Structured version   Visualization version   GIF version

Theorem ostth2 27067
Description: - Lemma for ostth 27069: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
Assertion
Ref Expression
ostth2 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦,𝜑   𝐽,𝑎,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎,𝑞,𝑦   𝑅,𝑎,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞,𝑎)   𝑅(𝑥)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑎)   𝑁(𝑞,𝑎)

Proof of Theorem ostth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
2 ostth.1 . . . . . . . 8 (𝜑𝐹𝐴)
3 ostth2.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘2))
4 eluz2b2 12887 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
53, 4sylib 217 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
65simpld 495 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
7 nnq 12928 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
86, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℚ)
9 qabsabv.a . . . . . . . . 9 𝐴 = (AbsVal‘𝑄)
10 qrng.q . . . . . . . . . 10 𝑄 = (ℂflds ℚ)
1110qrngbas 27049 . . . . . . . . 9 ℚ = (Base‘𝑄)
129, 11abvcl 20381 . . . . . . . 8 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
132, 8, 12syl2anc 584 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 ostth2.3 . . . . . . 7 (𝜑 → 1 < (𝐹𝑁))
1513, 14rplogcld 26066 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ+)
166nnred 12209 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
175simprd 496 . . . . . . 7 (𝜑 → 1 < 𝑁)
1816, 17rplogcld 26066 . . . . . 6 (𝜑 → (log‘𝑁) ∈ ℝ+)
1915, 18rpdivcld 13015 . . . . 5 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ∈ ℝ+)
201, 19eqeltrid 2836 . . . 4 (𝜑𝑅 ∈ ℝ+)
2120rpred 12998 . . 3 (𝜑𝑅 ∈ ℝ)
2220rpgt0d 13001 . . 3 (𝜑 → 0 < 𝑅)
236nnnn0d 12514 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2410, 9qabvle 27055 . . . . . . . . 9 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
252, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑁) ≤ 𝑁)
266nnne0d 12244 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
2710qrng0 27051 . . . . . . . . . . . 12 0 = (0g𝑄)
289, 11, 27abvgt0 20385 . . . . . . . . . . 11 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹𝑁))
292, 8, 26, 28syl3anc 1371 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑁))
3013, 29elrpd 12995 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ+)
3130reeflogd 26061 . . . . . . . 8 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
326nnrpd 12996 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
3332reeflogd 26061 . . . . . . . 8 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
3425, 31, 333brtr4d 5173 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁)))
3515rpred 12998 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
3632relogcld 26060 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
37 efle 16043 . . . . . . . 8 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3835, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3934, 38mpbird 256 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ≤ (log‘𝑁))
4018rpcnd 13000 . . . . . . 7 (𝜑 → (log‘𝑁) ∈ ℂ)
4140mulridd 11213 . . . . . 6 (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁))
4239, 41breqtrrd 5169 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1))
43 1red 11197 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4435, 43, 18ledivmuld 13051 . . . . 5 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1)))
4542, 44mpbird 256 . . . 4 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1)
461, 45eqbrtrid 5176 . . 3 (𝜑𝑅 ≤ 1)
47 0xr 11243 . . . 4 0 ∈ ℝ*
48 1re 11196 . . . 4 1 ∈ ℝ
49 elioc2 13369 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1)))
5047, 48, 49mp2an 690 . . 3 (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1))
5121, 22, 46, 50syl3anbrc 1343 . 2 (𝜑𝑅 ∈ (0(,]1))
5210, 9qabsabv 27059 . . . 4 (abs ↾ ℚ) ∈ 𝐴
53 fvres 6897 . . . . . . . 8 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
5453oveq1d 7408 . . . . . . 7 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅))
5554mpteq2ia 5244 . . . . . 6 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
5655eqcomi 2740 . . . . 5 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅))
579, 11, 56abvcxp 27045 . . . 4 (((abs ↾ ℚ) ∈ 𝐴𝑅 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
5852, 51, 57sylancr 587 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
59 eluzelz 12814 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
60 zq 12920 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
61 fveq2 6878 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
6261oveq1d 7408 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅))
63 eqid 2731 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
64 ovex 7426 . . . . . . 7 ((abs‘𝑧)↑𝑐𝑅) ∈ V
6562, 63, 64fvmpt 6984 . . . . . 6 (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6659, 60, 653syl 18 . . . . 5 (𝑧 ∈ (ℤ‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6766adantl 482 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
68 simpr 485 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ (ℤ‘2))
69 eluz2b2 12887 . . . . . . . . 9 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7068, 69sylib 217 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7170simpld 495 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ)
7271nnred 12209 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ)
7371nnnn0d 12514 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ0)
7473nn0ge0d 12517 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 ≤ 𝑧)
7572, 74absidd 15351 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (abs‘𝑧) = 𝑧)
7675oveq1d 7408 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((abs‘𝑧)↑𝑐𝑅) = (𝑧𝑐𝑅))
7772recnd 11224 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℂ)
7871nnne0d 12244 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ≠ 0)
7920rpcnd 13000 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
8079adantr 481 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℂ)
8177, 78, 80cxpefd 26149 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧))))
82 padic.j . . . . . . . . . . 11 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
83 ostth.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
842adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝐹𝐴)
853adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
8614adantr 481 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑁))
87 eqid 2731 . . . . . . . . . . 11 ((log‘(𝐹𝑧)) / (log‘𝑧)) = ((log‘(𝐹𝑧)) / (log‘𝑧))
88 eqid 2731 . . . . . . . . . . 11 if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧)) = if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧))
89 eqid 2731 . . . . . . . . . . 11 ((log‘𝑁) / (log‘𝑧)) = ((log‘𝑁) / (log‘𝑧))
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 27066 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑧) ∧ 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧))))
9190simprd 496 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)))
9290simpld 495 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑧))
93 eqid 2731 . . . . . . . . . . 11 if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁)) = if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁))
94 eqid 2731 . . . . . . . . . . 11 ((log‘𝑧) / (log‘𝑁)) = ((log‘𝑧) / (log‘𝑁))
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 27066 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑁) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅))
9695simprd 496 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)
9721adantr 481 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℝ)
9859adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
9998, 60syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℚ)
1009, 11abvcl 20381 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ) → (𝐹𝑧) ∈ ℝ)
10184, 99, 100syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ)
1029, 11, 27abvgt0 20385 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹𝑧))
10384, 99, 78, 102syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (𝐹𝑧))
104101, 103elrpd 12995 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ+)
105104relogcld 26060 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℝ)
10671nnrpd 12996 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ+)
107106relogcld 26060 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℝ)
108 ef0 16016 . . . . . . . . . . . . . 14 (exp‘0) = 1
10970simprd 496 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < 𝑧)
110106reeflogd 26061 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘𝑧)) = 𝑧)
111109, 110breqtrrd 5169 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (exp‘(log‘𝑧)))
112108, 111eqbrtrid 5176 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘0) < (exp‘(log‘𝑧)))
113 0re 11198 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 eflt 16042 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
115113, 107, 114sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
116112, 115mpbird 256 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (log‘𝑧))
117116gt0ne0d 11760 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ≠ 0)
118105, 107, 117redivcld 12024 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ∈ ℝ)
11997, 118letri3d 11338 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)))
12091, 96, 119mpbir2and 711 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)))
121120oveq1d 7408 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)))
122105recnd 11224 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℂ)
123107recnd 11224 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℂ)
124122, 123, 117divcan1d 11973 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹𝑧)))
125121, 124eqtrd 2771 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (log‘(𝐹𝑧)))
126125fveq2d 6882 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(𝑅 · (log‘𝑧))) = (exp‘(log‘(𝐹𝑧))))
127104reeflogd 26061 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘(𝐹𝑧))) = (𝐹𝑧))
12881, 126, 1273eqtrd 2775 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (𝐹𝑧))
12967, 76, 1283eqtrrd 2776 . . 3 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧))
13010, 9, 2, 58, 129ostthlem1 27057 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
131 oveq2 7401 . . . 4 (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅))
132131mpteq2dv 5243 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
133132rspceeqv 3629 . 2 ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
13451, 130, 133syl2anc 584 1 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wrex 3069  ifcif 4522   class class class wbr 5141  cmpt 5224  cres 5671  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  1c1 11093   · cmul 11097  *cxr 11229   < clt 11230  cle 11231  -cneg 11427   / cdiv 11853  cn 12194  2c2 12249  0cn0 12454  cz 12540  cuz 12804  cq 12914  +crp 12956  (,]cioc 13307  cexp 14009  abscabs 15163  expce 15987  cprime 16590   pCnt cpc 16751  s cress 17155  AbsValcabv 20373  fldccnfld 20878  logclog 25992  𝑐ccxp 25993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-shft 14996  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15615  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-grp 18797  df-minusg 18798  df-mulg 18923  df-subg 18975  df-cntz 19147  df-cmn 19614  df-mgp 19947  df-ur 19964  df-ring 20016  df-cring 20017  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-dvr 20165  df-drng 20267  df-subrg 20310  df-abv 20374  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-haus 22748  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-limc 25312  df-dv 25313  df-log 25994  df-cxp 25995
This theorem is referenced by:  ostth  27069
  Copyright terms: Public domain W3C validator