MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth2 Structured version   Visualization version   GIF version

Theorem ostth2 27570
Description: - Lemma for ostth 27572: regular case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth2.2 (𝜑𝑁 ∈ (ℤ‘2))
ostth2.3 (𝜑 → 1 < (𝐹𝑁))
ostth2.4 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
Assertion
Ref Expression
ostth2 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑞,𝑎,𝑥,𝑦,𝜑   𝐽,𝑎,𝑦   𝐴,𝑎,𝑞,𝑥,𝑦   𝑥,𝑁,𝑦   𝑥,𝑄,𝑦   𝐹,𝑎,𝑞,𝑦   𝑅,𝑎,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑄(𝑞,𝑎)   𝑅(𝑥)   𝐽(𝑥,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑎)   𝑁(𝑞,𝑎)

Proof of Theorem ostth2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ostth2.4 . . . . 5 𝑅 = ((log‘(𝐹𝑁)) / (log‘𝑁))
2 ostth.1 . . . . . . . 8 (𝜑𝐹𝐴)
3 ostth2.2 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘2))
4 eluz2b2 12814 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 1 < 𝑁))
53, 4sylib 218 . . . . . . . . . 10 (𝜑 → (𝑁 ∈ ℕ ∧ 1 < 𝑁))
65simpld 494 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
7 nnq 12855 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℚ)
86, 7syl 17 . . . . . . . 8 (𝜑𝑁 ∈ ℚ)
9 qabsabv.a . . . . . . . . 9 𝐴 = (AbsVal‘𝑄)
10 qrng.q . . . . . . . . . 10 𝑄 = (ℂflds ℚ)
1110qrngbas 27552 . . . . . . . . 9 ℚ = (Base‘𝑄)
129, 11abvcl 20726 . . . . . . . 8 ((𝐹𝐴𝑁 ∈ ℚ) → (𝐹𝑁) ∈ ℝ)
132, 8, 12syl2anc 584 . . . . . . 7 (𝜑 → (𝐹𝑁) ∈ ℝ)
14 ostth2.3 . . . . . . 7 (𝜑 → 1 < (𝐹𝑁))
1513, 14rplogcld 26560 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ+)
166nnred 12135 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
175simprd 495 . . . . . . 7 (𝜑 → 1 < 𝑁)
1816, 17rplogcld 26560 . . . . . 6 (𝜑 → (log‘𝑁) ∈ ℝ+)
1915, 18rpdivcld 12946 . . . . 5 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ∈ ℝ+)
201, 19eqeltrid 2835 . . . 4 (𝜑𝑅 ∈ ℝ+)
2120rpred 12929 . . 3 (𝜑𝑅 ∈ ℝ)
2220rpgt0d 12932 . . 3 (𝜑 → 0 < 𝑅)
236nnnn0d 12437 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ0)
2410, 9qabvle 27558 . . . . . . . . 9 ((𝐹𝐴𝑁 ∈ ℕ0) → (𝐹𝑁) ≤ 𝑁)
252, 23, 24syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑁) ≤ 𝑁)
266nnne0d 12170 . . . . . . . . . . 11 (𝜑𝑁 ≠ 0)
2710qrng0 27554 . . . . . . . . . . . 12 0 = (0g𝑄)
289, 11, 27abvgt0 20730 . . . . . . . . . . 11 ((𝐹𝐴𝑁 ∈ ℚ ∧ 𝑁 ≠ 0) → 0 < (𝐹𝑁))
292, 8, 26, 28syl3anc 1373 . . . . . . . . . 10 (𝜑 → 0 < (𝐹𝑁))
3013, 29elrpd 12926 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ+)
3130reeflogd 26555 . . . . . . . 8 (𝜑 → (exp‘(log‘(𝐹𝑁))) = (𝐹𝑁))
326nnrpd 12927 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ+)
3332reeflogd 26555 . . . . . . . 8 (𝜑 → (exp‘(log‘𝑁)) = 𝑁)
3425, 31, 333brtr4d 5118 . . . . . . 7 (𝜑 → (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁)))
3515rpred 12929 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑁)) ∈ ℝ)
3632relogcld 26554 . . . . . . . 8 (𝜑 → (log‘𝑁) ∈ ℝ)
37 efle 16022 . . . . . . . 8 (((log‘(𝐹𝑁)) ∈ ℝ ∧ (log‘𝑁) ∈ ℝ) → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3835, 36, 37syl2anc 584 . . . . . . 7 (𝜑 → ((log‘(𝐹𝑁)) ≤ (log‘𝑁) ↔ (exp‘(log‘(𝐹𝑁))) ≤ (exp‘(log‘𝑁))))
3934, 38mpbird 257 . . . . . 6 (𝜑 → (log‘(𝐹𝑁)) ≤ (log‘𝑁))
4018rpcnd 12931 . . . . . . 7 (𝜑 → (log‘𝑁) ∈ ℂ)
4140mulridd 11124 . . . . . 6 (𝜑 → ((log‘𝑁) · 1) = (log‘𝑁))
4239, 41breqtrrd 5114 . . . . 5 (𝜑 → (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1))
43 1red 11108 . . . . . 6 (𝜑 → 1 ∈ ℝ)
4435, 43, 18ledivmuld 12982 . . . . 5 (𝜑 → (((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1 ↔ (log‘(𝐹𝑁)) ≤ ((log‘𝑁) · 1)))
4542, 44mpbird 257 . . . 4 (𝜑 → ((log‘(𝐹𝑁)) / (log‘𝑁)) ≤ 1)
461, 45eqbrtrid 5121 . . 3 (𝜑𝑅 ≤ 1)
47 0xr 11154 . . . 4 0 ∈ ℝ*
48 1re 11107 . . . 4 1 ∈ ℝ
49 elioc2 13304 . . . 4 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1)))
5047, 48, 49mp2an 692 . . 3 (𝑅 ∈ (0(,]1) ↔ (𝑅 ∈ ℝ ∧ 0 < 𝑅𝑅 ≤ 1))
5121, 22, 46, 50syl3anbrc 1344 . 2 (𝜑𝑅 ∈ (0(,]1))
5210, 9qabsabv 27562 . . . 4 (abs ↾ ℚ) ∈ 𝐴
53 fvres 6836 . . . . . . . 8 (𝑦 ∈ ℚ → ((abs ↾ ℚ)‘𝑦) = (abs‘𝑦))
5453oveq1d 7356 . . . . . . 7 (𝑦 ∈ ℚ → (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅) = ((abs‘𝑦)↑𝑐𝑅))
5554mpteq2ia 5181 . . . . . 6 (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
5655eqcomi 2740 . . . . 5 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((abs ↾ ℚ)‘𝑦)↑𝑐𝑅))
579, 11, 56abvcxp 27548 . . . 4 (((abs ↾ ℚ) ∈ 𝐴𝑅 ∈ (0(,]1)) → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
5852, 51, 57sylancr 587 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
59 eluzelz 12737 . . . . . 6 (𝑧 ∈ (ℤ‘2) → 𝑧 ∈ ℤ)
60 zq 12847 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℚ)
61 fveq2 6817 . . . . . . . 8 (𝑦 = 𝑧 → (abs‘𝑦) = (abs‘𝑧))
6261oveq1d 7356 . . . . . . 7 (𝑦 = 𝑧 → ((abs‘𝑦)↑𝑐𝑅) = ((abs‘𝑧)↑𝑐𝑅))
63 eqid 2731 . . . . . . 7 (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))
64 ovex 7374 . . . . . . 7 ((abs‘𝑧)↑𝑐𝑅) ∈ V
6562, 63, 64fvmpt 6924 . . . . . 6 (𝑧 ∈ ℚ → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6659, 60, 653syl 18 . . . . 5 (𝑧 ∈ (ℤ‘2) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
6766adantl 481 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧) = ((abs‘𝑧)↑𝑐𝑅))
68 simpr 484 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ (ℤ‘2))
69 eluz2b2 12814 . . . . . . . . 9 (𝑧 ∈ (ℤ‘2) ↔ (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7068, 69sylib 218 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧 ∈ ℕ ∧ 1 < 𝑧))
7170simpld 494 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ)
7271nnred 12135 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ)
7371nnnn0d 12437 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℕ0)
7473nn0ge0d 12440 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 ≤ 𝑧)
7572, 74absidd 15325 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (abs‘𝑧) = 𝑧)
7675oveq1d 7356 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → ((abs‘𝑧)↑𝑐𝑅) = (𝑧𝑐𝑅))
7772recnd 11135 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℂ)
7871nnne0d 12170 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ≠ 0)
7920rpcnd 12931 . . . . . . 7 (𝜑𝑅 ∈ ℂ)
8079adantr 480 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℂ)
8177, 78, 80cxpefd 26643 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (exp‘(𝑅 · (log‘𝑧))))
82 padic.j . . . . . . . . . . 11 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
83 ostth.k . . . . . . . . . . 11 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
842adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝐹𝐴)
853adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
8614adantr 480 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑁))
87 eqid 2731 . . . . . . . . . . 11 ((log‘(𝐹𝑧)) / (log‘𝑧)) = ((log‘(𝐹𝑧)) / (log‘𝑧))
88 eqid 2731 . . . . . . . . . . 11 if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧)) = if((𝐹𝑧) ≤ 1, 1, (𝐹𝑧))
89 eqid 2731 . . . . . . . . . . 11 ((log‘𝑁) / (log‘𝑧)) = ((log‘𝑁) / (log‘𝑧))
9010, 9, 82, 83, 84, 85, 86, 1, 68, 87, 88, 89ostth2lem4 27569 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑧) ∧ 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧))))
9190simprd 495 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)))
9290simpld 494 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (𝐹𝑧))
93 eqid 2731 . . . . . . . . . . 11 if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁)) = if((𝐹𝑁) ≤ 1, 1, (𝐹𝑁))
94 eqid 2731 . . . . . . . . . . 11 ((log‘𝑧) / (log‘𝑁)) = ((log‘𝑧) / (log‘𝑁))
9510, 9, 82, 83, 84, 68, 92, 87, 85, 1, 93, 94ostth2lem4 27569 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → (1 < (𝐹𝑁) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅))
9695simprd 495 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)
9721adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 ∈ ℝ)
9859adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℤ)
9998, 60syl 17 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℚ)
1009, 11abvcl 20726 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ) → (𝐹𝑧) ∈ ℝ)
10184, 99, 100syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ)
1029, 11, 27abvgt0 20730 . . . . . . . . . . . . . 14 ((𝐹𝐴𝑧 ∈ ℚ ∧ 𝑧 ≠ 0) → 0 < (𝐹𝑧))
10384, 99, 78, 102syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (𝐹𝑧))
104101, 103elrpd 12926 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) ∈ ℝ+)
105104relogcld 26554 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℝ)
10671nnrpd 12927 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑧 ∈ ℝ+)
107106relogcld 26554 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℝ)
108 ef0 15993 . . . . . . . . . . . . . 14 (exp‘0) = 1
10970simprd 495 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < 𝑧)
110106reeflogd 26555 . . . . . . . . . . . . . . 15 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘𝑧)) = 𝑧)
111109, 110breqtrrd 5114 . . . . . . . . . . . . . 14 ((𝜑𝑧 ∈ (ℤ‘2)) → 1 < (exp‘(log‘𝑧)))
112108, 111eqbrtrid 5121 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘0) < (exp‘(log‘𝑧)))
113 0re 11109 . . . . . . . . . . . . . 14 0 ∈ ℝ
114 eflt 16021 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (log‘𝑧) ∈ ℝ) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
115113, 107, 114sylancr 587 . . . . . . . . . . . . 13 ((𝜑𝑧 ∈ (ℤ‘2)) → (0 < (log‘𝑧) ↔ (exp‘0) < (exp‘(log‘𝑧))))
116112, 115mpbird 257 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (ℤ‘2)) → 0 < (log‘𝑧))
117116gt0ne0d 11676 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ≠ 0)
118105, 107, 117redivcld 11944 . . . . . . . . . 10 ((𝜑𝑧 ∈ (ℤ‘2)) → ((log‘(𝐹𝑧)) / (log‘𝑧)) ∈ ℝ)
11997, 118letri3d 11250 . . . . . . . . 9 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)) ↔ (𝑅 ≤ ((log‘(𝐹𝑧)) / (log‘𝑧)) ∧ ((log‘(𝐹𝑧)) / (log‘𝑧)) ≤ 𝑅)))
12091, 96, 119mpbir2and 713 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → 𝑅 = ((log‘(𝐹𝑧)) / (log‘𝑧)))
121120oveq1d 7356 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)))
122105recnd 11135 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘(𝐹𝑧)) ∈ ℂ)
123107recnd 11135 . . . . . . . 8 ((𝜑𝑧 ∈ (ℤ‘2)) → (log‘𝑧) ∈ ℂ)
124122, 123, 117divcan1d 11893 . . . . . . 7 ((𝜑𝑧 ∈ (ℤ‘2)) → (((log‘(𝐹𝑧)) / (log‘𝑧)) · (log‘𝑧)) = (log‘(𝐹𝑧)))
125121, 124eqtrd 2766 . . . . . 6 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑅 · (log‘𝑧)) = (log‘(𝐹𝑧)))
126125fveq2d 6821 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(𝑅 · (log‘𝑧))) = (exp‘(log‘(𝐹𝑧))))
127104reeflogd 26555 . . . . 5 ((𝜑𝑧 ∈ (ℤ‘2)) → (exp‘(log‘(𝐹𝑧))) = (𝐹𝑧))
12881, 126, 1273eqtrd 2770 . . . 4 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝑧𝑐𝑅) = (𝐹𝑧))
12967, 76, 1283eqtrrd 2771 . . 3 ((𝜑𝑧 ∈ (ℤ‘2)) → (𝐹𝑧) = ((𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))‘𝑧))
13010, 9, 2, 58, 129ostthlem1 27560 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
131 oveq2 7349 . . . 4 (𝑎 = 𝑅 → ((abs‘𝑦)↑𝑐𝑎) = ((abs‘𝑦)↑𝑐𝑅))
132131mpteq2dv 5180 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅)))
133132rspceeqv 3595 . 2 ((𝑅 ∈ (0(,]1) ∧ 𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
13451, 130, 133syl2anc 584 1 (𝜑 → ∃𝑎 ∈ (0(,]1)𝐹 = (𝑦 ∈ ℚ ↦ ((abs‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wrex 3056  ifcif 4470   class class class wbr 5086  cmpt 5167  cres 5613  cfv 6476  (class class class)co 7341  cc 10999  cr 11000  0cc0 11001  1c1 11002   · cmul 11006  *cxr 11140   < clt 11141  cle 11142  -cneg 11340   / cdiv 11769  cn 12120  2c2 12175  0cn0 12376  cz 12463  cuz 12727  cq 12841  +crp 12885  (,]cioc 13241  cexp 13963  abscabs 15136  expce 15963  cprime 16577   pCnt cpc 16743  s cress 17136  AbsValcabv 20718  fldccnfld 21286  logclog 26485  𝑐ccxp 26486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080  ax-mulf 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-mod 13769  df-seq 13904  df-exp 13964  df-fac 14176  df-bc 14205  df-hash 14233  df-shft 14969  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-limsup 15373  df-clim 15390  df-rlim 15391  df-sum 15589  df-ef 15969  df-sin 15971  df-cos 15972  df-pi 15974  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-0g 17340  df-gsum 17341  df-topgen 17342  df-pt 17343  df-prds 17346  df-xrs 17401  df-qtop 17406  df-imas 17407  df-xps 17409  df-mre 17483  df-mrc 17484  df-acs 17486  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19224  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-cring 20149  df-oppr 20250  df-dvdsr 20270  df-unit 20271  df-invr 20301  df-dvr 20314  df-subrng 20456  df-subrg 20480  df-drng 20641  df-abv 20719  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-fg 21284  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-perf 23047  df-cn 23137  df-cnp 23138  df-haus 23225  df-tx 23472  df-hmeo 23665  df-fil 23756  df-fm 23848  df-flim 23849  df-flf 23850  df-xms 24230  df-ms 24231  df-tms 24232  df-cncf 24793  df-limc 25789  df-dv 25790  df-log 26487  df-cxp 26488
This theorem is referenced by:  ostth  27572
  Copyright terms: Public domain W3C validator