MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan Structured version   Visualization version   GIF version

Theorem efiatan 26820
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
efiatan (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))

Proof of Theorem efiatan
StepHypRef Expression
1 atanval 26792 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7365 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 ax-icn 11068 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
5 halfcl 12350 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
63, 5mp1i 13 . . . . 5 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
7 ax-1cn 11067 . . . . . . . 8 1 ∈ ℂ
8 atandm2 26785 . . . . . . . . . 10 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1145 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
10 mulcl 11093 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
113, 9, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 subcl 11362 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
137, 11, 12sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
148simp2bi 1146 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1513, 14logcld 26477 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
16 addcl 11091 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
177, 11, 16sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
188simp3bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1917, 18logcld 26477 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2015, 19subcld 11475 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
214, 6, 20mulassd 11138 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
22 2cn 12203 . . . . . . . 8 2 ∈ ℂ
23 2ne0 12232 . . . . . . . 8 2 ≠ 0
24 divneg 11816 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
257, 22, 23, 24mp3an 1463 . . . . . . 7 -(1 / 2) = (-1 / 2)
26 ixi 11749 . . . . . . . 8 (i · i) = -1
2726oveq1i 7359 . . . . . . 7 ((i · i) / 2) = (-1 / 2)
283, 3, 22, 23divassi 11880 . . . . . . 7 ((i · i) / 2) = (i · (i / 2))
2925, 27, 283eqtr2i 2758 . . . . . 6 -(1 / 2) = (i · (i / 2))
3029oveq1i 7359 . . . . 5 (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
31 halfcn 12338 . . . . . . 7 (1 / 2) ∈ ℂ
32 mulneg12 11558 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3331, 20, 32sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3415, 19negsubdi2d 11491 . . . . . . 7 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
3534oveq2d 7365 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
3631a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
3736, 19, 15subdid 11576 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3833, 35, 373eqtrd 2768 . . . . 5 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3930, 38eqtr3id 2778 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
402, 21, 393eqtr2d 2770 . . 3 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
4140fveq2d 6826 . 2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))))
42 mulcl 11093 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4331, 19, 42sylancr 587 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
44 mulcl 11093 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
4531, 15, 44sylancr 587 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
46 efsub 16009 . . 3 ((((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ ∧ ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4743, 45, 46syl2anc 584 . 2 (𝐴 ∈ dom arctan → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4817, 18, 36cxpefd 26619 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))))
49 cxpsqrt 26610 . . . . 5 ((1 + (i · 𝐴)) ∈ ℂ → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5017, 49syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5148, 50eqtr3d 2766 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) = (√‘(1 + (i · 𝐴))))
5213, 14, 36cxpefd 26619 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))))
53 cxpsqrt 26610 . . . . 5 ((1 − (i · 𝐴)) ∈ ℂ → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5413, 53syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5552, 54eqtr3d 2766 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))) = (√‘(1 − (i · 𝐴))))
5651, 55oveq12d 7367 . 2 (𝐴 ∈ dom arctan → ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
5741, 47, 563eqtrd 2768 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  dom cdm 5619  cfv 6482  (class class class)co 7349  cc 11007  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  csqrt 15140  expce 15968  logclog 26461  𝑐ccxp 26462  arctancatan 26772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-cxp 26464  df-atan 26775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator