MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan Structured version   Visualization version   GIF version

Theorem efiatan 25749
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
efiatan (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))

Proof of Theorem efiatan
StepHypRef Expression
1 atanval 25721 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7207 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 ax-icn 10753 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
5 halfcl 12020 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
63, 5mp1i 13 . . . . 5 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
7 ax-1cn 10752 . . . . . . . 8 1 ∈ ℂ
8 atandm2 25714 . . . . . . . . . 10 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1147 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
10 mulcl 10778 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
113, 9, 10sylancr 590 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 subcl 11042 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
137, 11, 12sylancr 590 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
148simp2bi 1148 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1513, 14logcld 25413 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
16 addcl 10776 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
177, 11, 16sylancr 590 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
188simp3bi 1149 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1917, 18logcld 25413 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2015, 19subcld 11154 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
214, 6, 20mulassd 10821 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
22 2cn 11870 . . . . . . . 8 2 ∈ ℂ
23 2ne0 11899 . . . . . . . 8 2 ≠ 0
24 divneg 11489 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
257, 22, 23, 24mp3an 1463 . . . . . . 7 -(1 / 2) = (-1 / 2)
26 ixi 11426 . . . . . . . 8 (i · i) = -1
2726oveq1i 7201 . . . . . . 7 ((i · i) / 2) = (-1 / 2)
283, 3, 22, 23divassi 11553 . . . . . . 7 ((i · i) / 2) = (i · (i / 2))
2925, 27, 283eqtr2i 2765 . . . . . 6 -(1 / 2) = (i · (i / 2))
3029oveq1i 7201 . . . . 5 (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
31 halfcn 12010 . . . . . . 7 (1 / 2) ∈ ℂ
32 mulneg12 11235 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3331, 20, 32sylancr 590 . . . . . 6 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3415, 19negsubdi2d 11170 . . . . . . 7 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
3534oveq2d 7207 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
3631a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
3736, 19, 15subdid 11253 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3833, 35, 373eqtrd 2775 . . . . 5 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3930, 38eqtr3id 2785 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
402, 21, 393eqtr2d 2777 . . 3 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
4140fveq2d 6699 . 2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))))
42 mulcl 10778 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4331, 19, 42sylancr 590 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
44 mulcl 10778 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
4531, 15, 44sylancr 590 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
46 efsub 15624 . . 3 ((((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ ∧ ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4743, 45, 46syl2anc 587 . 2 (𝐴 ∈ dom arctan → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4817, 18, 36cxpefd 25554 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))))
49 cxpsqrt 25545 . . . . 5 ((1 + (i · 𝐴)) ∈ ℂ → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5017, 49syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5148, 50eqtr3d 2773 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) = (√‘(1 + (i · 𝐴))))
5213, 14, 36cxpefd 25554 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))))
53 cxpsqrt 25545 . . . . 5 ((1 − (i · 𝐴)) ∈ ℂ → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5413, 53syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5552, 54eqtr3d 2773 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))) = (√‘(1 − (i · 𝐴))))
5651, 55oveq12d 7209 . 2 (𝐴 ∈ dom arctan → ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
5741, 47, 563eqtrd 2775 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2932  dom cdm 5536  cfv 6358  (class class class)co 7191  cc 10692  0cc0 10694  1c1 10695  ici 10696   + caddc 10697   · cmul 10699  cmin 11027  -cneg 11028   / cdiv 11454  2c2 11850  csqrt 14761  expce 15586  logclog 25397  𝑐ccxp 25398  arctancatan 25701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-ioo 12904  df-ioc 12905  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-seq 13540  df-exp 13601  df-fac 13805  df-bc 13834  df-hash 13862  df-shft 14595  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-limsup 14997  df-clim 15014  df-rlim 15015  df-sum 15215  df-ef 15592  df-sin 15594  df-cos 15595  df-pi 15597  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718  df-log 25399  df-cxp 25400  df-atan 25704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator