MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efiatan Structured version   Visualization version   GIF version

Theorem efiatan 26955
Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015.)
Assertion
Ref Expression
efiatan (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))

Proof of Theorem efiatan
StepHypRef Expression
1 atanval 26927 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
21oveq2d 7447 . . . 4 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3 ax-icn 11214 . . . . . 6 i ∈ ℂ
43a1i 11 . . . . 5 (𝐴 ∈ dom arctan → i ∈ ℂ)
5 halfcl 12491 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
63, 5mp1i 13 . . . . 5 (𝐴 ∈ dom arctan → (i / 2) ∈ ℂ)
7 ax-1cn 11213 . . . . . . . 8 1 ∈ ℂ
8 atandm2 26920 . . . . . . . . . 10 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
98simp1bi 1146 . . . . . . . . 9 (𝐴 ∈ dom arctan → 𝐴 ∈ ℂ)
10 mulcl 11239 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
113, 9, 10sylancr 587 . . . . . . . 8 (𝐴 ∈ dom arctan → (i · 𝐴) ∈ ℂ)
12 subcl 11507 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
137, 11, 12sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ∈ ℂ)
148simp2bi 1147 . . . . . . 7 (𝐴 ∈ dom arctan → (1 − (i · 𝐴)) ≠ 0)
1513, 14logcld 26612 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 − (i · 𝐴))) ∈ ℂ)
16 addcl 11237 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
177, 11, 16sylancr 587 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ∈ ℂ)
188simp3bi 1148 . . . . . . 7 (𝐴 ∈ dom arctan → (1 + (i · 𝐴)) ≠ 0)
1917, 18logcld 26612 . . . . . 6 (𝐴 ∈ dom arctan → (log‘(1 + (i · 𝐴))) ∈ ℂ)
2015, 19subcld 11620 . . . . 5 (𝐴 ∈ dom arctan → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
214, 6, 20mulassd 11284 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (i · ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
22 2cn 12341 . . . . . . . 8 2 ∈ ℂ
23 2ne0 12370 . . . . . . . 8 2 ≠ 0
24 divneg 11959 . . . . . . . 8 ((1 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(1 / 2) = (-1 / 2))
257, 22, 23, 24mp3an 1463 . . . . . . 7 -(1 / 2) = (-1 / 2)
26 ixi 11892 . . . . . . . 8 (i · i) = -1
2726oveq1i 7441 . . . . . . 7 ((i · i) / 2) = (-1 / 2)
283, 3, 22, 23divassi 12023 . . . . . . 7 ((i · i) / 2) = (i · (i / 2))
2925, 27, 283eqtr2i 2771 . . . . . 6 -(1 / 2) = (i · (i / 2))
3029oveq1i 7441 . . . . 5 (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))
31 halfcn 12481 . . . . . . 7 (1 / 2) ∈ ℂ
32 mulneg12 11701 . . . . . . 7 (((1 / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3331, 20, 32sylancr 587 . . . . . 6 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
3415, 19negsubdi2d 11636 . . . . . . 7 (𝐴 ∈ dom arctan → -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) = ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴)))))
3534oveq2d 7447 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · -((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))))
3631a1i 11 . . . . . . 7 (𝐴 ∈ dom arctan → (1 / 2) ∈ ℂ)
3736, 19, 15subdid 11719 . . . . . 6 (𝐴 ∈ dom arctan → ((1 / 2) · ((log‘(1 + (i · 𝐴))) − (log‘(1 − (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3833, 35, 373eqtrd 2781 . . . . 5 (𝐴 ∈ dom arctan → (-(1 / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
3930, 38eqtr3id 2791 . . . 4 (𝐴 ∈ dom arctan → ((i · (i / 2)) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
402, 21, 393eqtr2d 2783 . . 3 (𝐴 ∈ dom arctan → (i · (arctan‘𝐴)) = (((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴))))))
4140fveq2d 6910 . 2 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))))
42 mulcl 11239 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
4331, 19, 42sylancr 587 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ)
44 mulcl 11239 . . . 4 (((1 / 2) ∈ ℂ ∧ (log‘(1 − (i · 𝐴))) ∈ ℂ) → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
4531, 15, 44sylancr 587 . . 3 (𝐴 ∈ dom arctan → ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ)
46 efsub 16136 . . 3 ((((1 / 2) · (log‘(1 + (i · 𝐴)))) ∈ ℂ ∧ ((1 / 2) · (log‘(1 − (i · 𝐴)))) ∈ ℂ) → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4743, 45, 46syl2anc 584 . 2 (𝐴 ∈ dom arctan → (exp‘(((1 / 2) · (log‘(1 + (i · 𝐴)))) − ((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))))
4817, 18, 36cxpefd 26754 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))))
49 cxpsqrt 26745 . . . . 5 ((1 + (i · 𝐴)) ∈ ℂ → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5017, 49syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 + (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 + (i · 𝐴))))
5148, 50eqtr3d 2779 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) = (√‘(1 + (i · 𝐴))))
5213, 14, 36cxpefd 26754 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))))
53 cxpsqrt 26745 . . . . 5 ((1 − (i · 𝐴)) ∈ ℂ → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5413, 53syl 17 . . . 4 (𝐴 ∈ dom arctan → ((1 − (i · 𝐴))↑𝑐(1 / 2)) = (√‘(1 − (i · 𝐴))))
5552, 54eqtr3d 2779 . . 3 (𝐴 ∈ dom arctan → (exp‘((1 / 2) · (log‘(1 − (i · 𝐴))))) = (√‘(1 − (i · 𝐴))))
5651, 55oveq12d 7449 . 2 (𝐴 ∈ dom arctan → ((exp‘((1 / 2) · (log‘(1 + (i · 𝐴))))) / (exp‘((1 / 2) · (log‘(1 − (i · 𝐴)))))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
5741, 47, 563eqtrd 2781 1 (𝐴 ∈ dom arctan → (exp‘(i · (arctan‘𝐴))) = ((√‘(1 + (i · 𝐴))) / (√‘(1 − (i · 𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wne 2940  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  csqrt 15272  expce 16097  logclog 26596  𝑐ccxp 26597  arctancatan 26907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599  df-atan 26910
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator