MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Visualization version   GIF version

Theorem cxp2limlem 26893
Description: A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 11184 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
2 2rp 12963 . . . . 5 2 ∈ ℝ+
3 rplogcl 26520 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
4 2z 12572 . . . . . 6 2 ∈ ℤ
5 rpexpcl 14052 . . . . . 6 (((log‘𝐴) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝐴)↑2) ∈ ℝ+)
63, 4, 5sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((log‘𝐴)↑2) ∈ ℝ+)
7 rpdivcl 12985 . . . . 5 ((2 ∈ ℝ+ ∧ ((log‘𝐴)↑2) ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
82, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
98rpcnd 13004 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
10 divrcnv 15825 . . 3 ((2 / ((log‘𝐴)↑2)) ∈ ℂ → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
128rpred 13002 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ)
13 rerpdivcl 12990 . . 3 (((2 / ((log‘𝐴)↑2)) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
1412, 13sylan 580 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
15 simpr 484 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
16 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 1red 11182 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11707 . . . . . . . 8 0 < 1
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
20 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
211, 17, 16, 19, 20lttrd 11342 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
2216, 21elrpd 12999 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
23 rpre 12967 . . . . 5 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
24 rpcxpcl 26592 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ) → (𝐴𝑐𝑛) ∈ ℝ+)
2522, 23, 24syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) ∈ ℝ+)
2615, 25rpdivcld 13019 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ+)
2726rpred 13002 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℝ+)
2915, 28rpmulcld 13018 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ+)
3029rpred 13002 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ)
3130resqcld 14097 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) ∈ ℝ)
3231rehalfcld 12436 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) ∈ ℝ)
33 1rp 12962 . . . . . . . . . . 11 1 ∈ ℝ+
34 rpaddcl 12982 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (𝑛 · (log‘𝐴)) ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3533, 29, 34sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3635rpred 13002 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ)
3736, 32readdcld 11210 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) ∈ ℝ)
3830reefcld 16061 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (exp‘(𝑛 · (log‘𝐴))) ∈ ℝ)
3932, 35ltaddrp2d 13036 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)))
40 efgt1p2 16089 . . . . . . . . 9 ((𝑛 · (log‘𝐴)) ∈ ℝ+ → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4129, 40syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4232, 37, 38, 39, 41lttrd 11342 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < (exp‘(𝑛 · (log‘𝐴))))
4323adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
4443recnd 11209 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
4544sqcld 14116 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℂ)
46 2cnd 12271 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ∈ ℂ)
476adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℝ+)
4847rpcnd 13004 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℂ)
49 2ne0 12297 . . . . . . . . . 10 2 ≠ 0
5049a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ≠ 0)
5147rpne0d 13007 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ≠ 0)
5245, 46, 48, 50, 51divdiv2d 11997 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
533rpcnd 13004 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℂ)
5453adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
5544, 54sqmuld 14130 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) = ((𝑛↑2) · ((log‘𝐴)↑2)))
5655oveq1d 7405 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
5752, 56eqtr4d 2768 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛 · (log‘𝐴))↑2) / 2))
5816recnd 11209 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
5958adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
6022adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ+)
6160rpne0d 13007 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ≠ 0)
6259, 61, 44cxpefd 26628 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) = (exp‘(𝑛 · (log‘𝐴))))
6342, 57, 623brtr4d 5142 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛))
64 rpexpcl 14052 . . . . . . . . 9 ((𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑛↑2) ∈ ℝ+)
6515, 4, 64sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℝ+)
668adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
6765, 66rpdivcld 13019 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) ∈ ℝ+)
6867, 25, 15ltdiv2d 13025 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛) ↔ (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2))))))
6963, 68mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))))
709adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
7165rpne0d 13007 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ≠ 0)
7266rpne0d 13007 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ≠ 0)
7344, 45, 70, 71, 72divdiv2d 11997 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)))
7444sqvald 14115 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) = (𝑛 · 𝑛))
7574oveq2d 7406 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)))
76 rpne0 12975 . . . . . . . 8 (𝑛 ∈ ℝ+𝑛 ≠ 0)
7776adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
7870, 44, 44, 77, 77divcan5d 11991 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
7973, 75, 783eqtrd 2769 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
8069, 79breqtrd 5136 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < ((2 / ((log‘𝐴)↑2)) / 𝑛))
8127, 14, 80ltled 11329 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8281adantrr 717 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8326rpge0d 13006 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
8483adantrr 717 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
851, 1, 11, 14, 27, 82, 84rlimsqz2 15624 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2926   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216   / cdiv 11842  2c2 12248  cz 12536  +crp 12958  cexp 14033  𝑟 crli 15458  expce 16034  logclog 26470  𝑐ccxp 26471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-cxp 26473
This theorem is referenced by:  cxp2lim  26894  cxploglim  26895
  Copyright terms: Public domain W3C validator