MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Visualization version   GIF version

Theorem cxp2limlem 26325
Description: A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 11158 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
2 2rp 12920 . . . . 5 2 ∈ ℝ+
3 rplogcl 25959 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
4 2z 12535 . . . . . 6 2 ∈ ℤ
5 rpexpcl 13986 . . . . . 6 (((log‘𝐴) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝐴)↑2) ∈ ℝ+)
63, 4, 5sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((log‘𝐴)↑2) ∈ ℝ+)
7 rpdivcl 12940 . . . . 5 ((2 ∈ ℝ+ ∧ ((log‘𝐴)↑2) ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
82, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
98rpcnd 12959 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
10 divrcnv 15737 . . 3 ((2 / ((log‘𝐴)↑2)) ∈ ℂ → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
128rpred 12957 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ)
13 rerpdivcl 12945 . . 3 (((2 / ((log‘𝐴)↑2)) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
1412, 13sylan 580 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
15 simpr 485 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
16 simpl 483 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 1red 11156 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11677 . . . . . . . 8 0 < 1
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
20 simpr 485 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
211, 17, 16, 19, 20lttrd 11316 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
2216, 21elrpd 12954 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
23 rpre 12923 . . . . 5 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
24 rpcxpcl 26031 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ) → (𝐴𝑐𝑛) ∈ ℝ+)
2522, 23, 24syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) ∈ ℝ+)
2615, 25rpdivcld 12974 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ+)
2726rpred 12957 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ)
283adantr 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℝ+)
2915, 28rpmulcld 12973 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ+)
3029rpred 12957 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ)
3130resqcld 14030 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) ∈ ℝ)
3231rehalfcld 12400 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) ∈ ℝ)
33 1rp 12919 . . . . . . . . . . 11 1 ∈ ℝ+
34 rpaddcl 12937 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (𝑛 · (log‘𝐴)) ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3533, 29, 34sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3635rpred 12957 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ)
3736, 32readdcld 11184 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) ∈ ℝ)
3830reefcld 15970 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (exp‘(𝑛 · (log‘𝐴))) ∈ ℝ)
3932, 35ltaddrp2d 12991 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)))
40 efgt1p2 15996 . . . . . . . . 9 ((𝑛 · (log‘𝐴)) ∈ ℝ+ → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4129, 40syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4232, 37, 38, 39, 41lttrd 11316 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < (exp‘(𝑛 · (log‘𝐴))))
4323adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
4443recnd 11183 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
4544sqcld 14049 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℂ)
46 2cnd 12231 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ∈ ℂ)
476adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℝ+)
4847rpcnd 12959 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℂ)
49 2ne0 12257 . . . . . . . . . 10 2 ≠ 0
5049a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ≠ 0)
5147rpne0d 12962 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ≠ 0)
5245, 46, 48, 50, 51divdiv2d 11963 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
533rpcnd 12959 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℂ)
5453adantr 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
5544, 54sqmuld 14063 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) = ((𝑛↑2) · ((log‘𝐴)↑2)))
5655oveq1d 7372 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
5752, 56eqtr4d 2779 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛 · (log‘𝐴))↑2) / 2))
5816recnd 11183 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
5958adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
6022adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ+)
6160rpne0d 12962 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ≠ 0)
6259, 61, 44cxpefd 26067 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) = (exp‘(𝑛 · (log‘𝐴))))
6342, 57, 623brtr4d 5137 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛))
64 rpexpcl 13986 . . . . . . . . 9 ((𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑛↑2) ∈ ℝ+)
6515, 4, 64sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℝ+)
668adantr 481 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
6765, 66rpdivcld 12974 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) ∈ ℝ+)
6867, 25, 15ltdiv2d 12980 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛) ↔ (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2))))))
6963, 68mpbid 231 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))))
709adantr 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
7165rpne0d 12962 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ≠ 0)
7266rpne0d 12962 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ≠ 0)
7344, 45, 70, 71, 72divdiv2d 11963 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)))
7444sqvald 14048 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) = (𝑛 · 𝑛))
7574oveq2d 7373 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)))
76 rpne0 12931 . . . . . . . 8 (𝑛 ∈ ℝ+𝑛 ≠ 0)
7776adantl 482 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
7870, 44, 44, 77, 77divcan5d 11957 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
7973, 75, 783eqtrd 2780 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
8069, 79breqtrd 5131 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < ((2 / ((log‘𝐴)↑2)) / 𝑛))
8127, 14, 80ltled 11303 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8281adantrr 715 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8326rpge0d 12961 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
8483adantrr 715 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
851, 1, 11, 14, 27, 82, 84rlimsqz2 15535 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  2c2 12208  cz 12499  +crp 12915  cexp 13967  𝑟 crli 15367  expce 15944  logclog 25910  𝑐ccxp 25911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-log 25912  df-cxp 25913
This theorem is referenced by:  cxp2lim  26326  cxploglim  26327
  Copyright terms: Public domain W3C validator