MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Visualization version   GIF version

Theorem cxp2limlem 26911
Description: A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 11112 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
2 2rp 12892 . . . . 5 2 ∈ ℝ+
3 rplogcl 26538 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
4 2z 12501 . . . . . 6 2 ∈ ℤ
5 rpexpcl 13984 . . . . . 6 (((log‘𝐴) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝐴)↑2) ∈ ℝ+)
63, 4, 5sylancl 586 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((log‘𝐴)↑2) ∈ ℝ+)
7 rpdivcl 12914 . . . . 5 ((2 ∈ ℝ+ ∧ ((log‘𝐴)↑2) ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
82, 6, 7sylancr 587 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
98rpcnd 12933 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
10 divrcnv 15756 . . 3 ((2 / ((log‘𝐴)↑2)) ∈ ℂ → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
128rpred 12931 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ)
13 rerpdivcl 12919 . . 3 (((2 / ((log‘𝐴)↑2)) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
1412, 13sylan 580 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
15 simpr 484 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
16 simpl 482 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 1red 11110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 11636 . . . . . . . 8 0 < 1
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
20 simpr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
211, 17, 16, 19, 20lttrd 11271 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
2216, 21elrpd 12928 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
23 rpre 12896 . . . . 5 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
24 rpcxpcl 26610 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ) → (𝐴𝑐𝑛) ∈ ℝ+)
2522, 23, 24syl2an 596 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) ∈ ℝ+)
2615, 25rpdivcld 12948 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ+)
2726rpred 12931 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℝ+)
2915, 28rpmulcld 12947 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ+)
3029rpred 12931 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ)
3130resqcld 14029 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) ∈ ℝ)
3231rehalfcld 12365 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) ∈ ℝ)
33 1rp 12891 . . . . . . . . . . 11 1 ∈ ℝ+
34 rpaddcl 12911 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (𝑛 · (log‘𝐴)) ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3533, 29, 34sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3635rpred 12931 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ)
3736, 32readdcld 11138 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) ∈ ℝ)
3830reefcld 15992 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (exp‘(𝑛 · (log‘𝐴))) ∈ ℝ)
3932, 35ltaddrp2d 12965 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)))
40 efgt1p2 16020 . . . . . . . . 9 ((𝑛 · (log‘𝐴)) ∈ ℝ+ → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4129, 40syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4232, 37, 38, 39, 41lttrd 11271 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < (exp‘(𝑛 · (log‘𝐴))))
4323adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
4443recnd 11137 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
4544sqcld 14048 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℂ)
46 2cnd 12200 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ∈ ℂ)
476adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℝ+)
4847rpcnd 12933 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℂ)
49 2ne0 12226 . . . . . . . . . 10 2 ≠ 0
5049a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ≠ 0)
5147rpne0d 12936 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ≠ 0)
5245, 46, 48, 50, 51divdiv2d 11926 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
533rpcnd 12933 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℂ)
5453adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
5544, 54sqmuld 14062 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) = ((𝑛↑2) · ((log‘𝐴)↑2)))
5655oveq1d 7361 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
5752, 56eqtr4d 2769 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛 · (log‘𝐴))↑2) / 2))
5816recnd 11137 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
5958adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
6022adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ+)
6160rpne0d 12936 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ≠ 0)
6259, 61, 44cxpefd 26646 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) = (exp‘(𝑛 · (log‘𝐴))))
6342, 57, 623brtr4d 5123 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛))
64 rpexpcl 13984 . . . . . . . . 9 ((𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑛↑2) ∈ ℝ+)
6515, 4, 64sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℝ+)
668adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
6765, 66rpdivcld 12948 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) ∈ ℝ+)
6867, 25, 15ltdiv2d 12954 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛) ↔ (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2))))))
6963, 68mpbid 232 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))))
709adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
7165rpne0d 12936 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ≠ 0)
7266rpne0d 12936 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ≠ 0)
7344, 45, 70, 71, 72divdiv2d 11926 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)))
7444sqvald 14047 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) = (𝑛 · 𝑛))
7574oveq2d 7362 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)))
76 rpne0 12904 . . . . . . . 8 (𝑛 ∈ ℝ+𝑛 ≠ 0)
7776adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
7870, 44, 44, 77, 77divcan5d 11920 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
7973, 75, 783eqtrd 2770 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
8069, 79breqtrd 5117 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < ((2 / ((log‘𝐴)↑2)) / 𝑛))
8127, 14, 80ltled 11258 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8281adantrr 717 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8326rpge0d 12935 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
8483adantrr 717 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
851, 1, 11, 14, 27, 82, 84rlimsqz2 15555 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wne 2928   class class class wbr 5091  cmpt 5172  cfv 6481  (class class class)co 7346  cc 11001  cr 11002  0cc0 11003  1c1 11004   + caddc 11006   · cmul 11008   < clt 11143  cle 11144   / cdiv 11771  2c2 12177  cz 12465  +crp 12887  cexp 13965  𝑟 crli 15389  expce 15965  logclog 26488  𝑐ccxp 26489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ioo 13246  df-ioc 13247  df-ico 13248  df-icc 13249  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-fac 14178  df-bc 14207  df-hash 14235  df-shft 14971  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-limsup 15375  df-clim 15392  df-rlim 15393  df-sum 15591  df-ef 15971  df-sin 15973  df-cos 15974  df-pi 15976  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-hom 17182  df-cco 17183  df-rest 17323  df-topn 17324  df-0g 17342  df-gsum 17343  df-topgen 17344  df-pt 17345  df-prds 17348  df-xrs 17403  df-qtop 17408  df-imas 17409  df-xps 17411  df-mre 17485  df-mrc 17486  df-acs 17488  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-mulg 18978  df-cntz 19227  df-cmn 19692  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-fbas 21286  df-fg 21287  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-cld 22932  df-ntr 22933  df-cls 22934  df-nei 23011  df-lp 23049  df-perf 23050  df-cn 23140  df-cnp 23141  df-haus 23228  df-tx 23475  df-hmeo 23668  df-fil 23759  df-fm 23851  df-flim 23852  df-flf 23853  df-xms 24233  df-ms 24234  df-tms 24235  df-cncf 24796  df-limc 25792  df-dv 25793  df-log 26490  df-cxp 26491
This theorem is referenced by:  cxp2lim  26912  cxploglim  26913
  Copyright terms: Public domain W3C validator