Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvcllem5 Structured version   Visualization version   GIF version

Theorem selvcllem5 40946
Description: The fifth argument passed to evalSub is in the domain (a function 𝐼𝐸). (Contributed by SN, 22-Feb-2024.)
Hypotheses
Ref Expression
selvcllem5.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvcllem5.t 𝑇 = (𝐽 mPoly 𝑈)
selvcllem5.c 𝐶 = (algSc‘𝑇)
selvcllem5.e 𝐸 = (Base‘𝑇)
selvcllem5.f 𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
selvcllem5.i (𝜑𝐼𝑉)
selvcllem5.r (𝜑𝑅 ∈ CRing)
selvcllem5.j (𝜑𝐽𝐼)
Assertion
Ref Expression
selvcllem5 (𝜑𝐹 ∈ (𝐸m 𝐼))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem selvcllem5
StepHypRef Expression
1 selvcllem5.t . . . . . 6 𝑇 = (𝐽 mPoly 𝑈)
2 eqid 2731 . . . . . 6 (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈)
3 selvcllem5.e . . . . . 6 𝐸 = (Base‘𝑇)
4 selvcllem5.i . . . . . . . 8 (𝜑𝐼𝑉)
5 selvcllem5.j . . . . . . . 8 (𝜑𝐽𝐼)
64, 5ssexd 5317 . . . . . . 7 (𝜑𝐽 ∈ V)
76adantr 481 . . . . . 6 ((𝜑𝑥𝐽) → 𝐽 ∈ V)
84difexd 5322 . . . . . . . 8 (𝜑 → (𝐼𝐽) ∈ V)
9 selvcllem5.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
10 crngring 20026 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
119, 10syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
12 selvcllem5.u . . . . . . . . 9 𝑈 = ((𝐼𝐽) mPoly 𝑅)
1312mplring 21506 . . . . . . . 8 (((𝐼𝐽) ∈ V ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring)
148, 11, 13syl2anc 584 . . . . . . 7 (𝜑𝑈 ∈ Ring)
1514adantr 481 . . . . . 6 ((𝜑𝑥𝐽) → 𝑈 ∈ Ring)
16 simpr 485 . . . . . 6 ((𝜑𝑥𝐽) → 𝑥𝐽)
171, 2, 3, 7, 15, 16mvrcl 21503 . . . . 5 ((𝜑𝑥𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸)
1817adantlr 713 . . . 4 (((𝜑𝑥𝐼) ∧ 𝑥𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸)
19 eqid 2731 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
20 selvcllem5.c . . . . . . 7 𝐶 = (algSc‘𝑇)
211, 3, 19, 20, 6, 14mplasclf 21555 . . . . . 6 (𝜑𝐶:(Base‘𝑈)⟶𝐸)
2221ad2antrr 724 . . . . 5 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝐶:(Base‘𝑈)⟶𝐸)
23 eqid 2731 . . . . . 6 ((𝐼𝐽) mVar 𝑅) = ((𝐼𝐽) mVar 𝑅)
248ad2antrr 724 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (𝐼𝐽) ∈ V)
2511ad2antrr 724 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝑅 ∈ Ring)
26 eldif 3954 . . . . . . . 8 (𝑥 ∈ (𝐼𝐽) ↔ (𝑥𝐼 ∧ ¬ 𝑥𝐽))
2726biimpri 227 . . . . . . 7 ((𝑥𝐼 ∧ ¬ 𝑥𝐽) → 𝑥 ∈ (𝐼𝐽))
2827adantll 712 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝑥 ∈ (𝐼𝐽))
2912, 23, 19, 24, 25, 28mvrcl 21503 . . . . 5 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (((𝐼𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈))
3022, 29ffvelcdmd 7072 . . . 4 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸)
3118, 30ifclda 4557 . . 3 ((𝜑𝑥𝐼) → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸)
32 selvcllem5.f . . 3 𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3331, 32fmptd 7098 . 2 (𝜑𝐹:𝐼𝐸)
34 fvexd 6893 . . . 4 (𝜑 → (Base‘𝑇) ∈ V)
353, 34eqeltrid 2836 . . 3 (𝜑𝐸 ∈ V)
3635, 4elmapd 8817 . 2 (𝜑 → (𝐹 ∈ (𝐸m 𝐼) ↔ 𝐹:𝐼𝐸))
3733, 36mpbird 256 1 (𝜑𝐹 ∈ (𝐸m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  cdif 3941  wss 3944  ifcif 4522  cmpt 5224  wf 6528  cfv 6532  (class class class)co 7393  m cmap 8803  Basecbs 17126  Ringcrg 20014  CRingccrg 20015  algSccascl 21340   mVar cmvr 21389   mPoly cmpl 21390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-ofr 7654  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-sup 9419  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-fz 13467  df-fzo 13610  df-seq 13949  df-hash 14273  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17369  df-gsum 17370  df-prds 17375  df-pws 17377  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-mhm 18647  df-submnd 18648  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-subg 18975  df-ghm 19056  df-cntz 19147  df-cmn 19614  df-abl 19615  df-mgp 19947  df-ur 19964  df-ring 20016  df-cring 20017  df-subrg 20310  df-lmod 20422  df-lss 20492  df-ascl 21343  df-psr 21393  df-mvr 21394  df-mpl 21395
This theorem is referenced by:  selvcl  40947  selvadd  40949  selvmul  40950
  Copyright terms: Public domain W3C validator