Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvcllem5 Structured version   Visualization version   GIF version

Theorem selvcllem5 42577
Description: The fifth argument passed to evalSub is in the domain (a function 𝐼𝐸). (Contributed by SN, 22-Feb-2024.)
Hypotheses
Ref Expression
selvcllem5.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvcllem5.t 𝑇 = (𝐽 mPoly 𝑈)
selvcllem5.c 𝐶 = (algSc‘𝑇)
selvcllem5.e 𝐸 = (Base‘𝑇)
selvcllem5.f 𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
selvcllem5.i (𝜑𝐼𝑉)
selvcllem5.r (𝜑𝑅 ∈ CRing)
selvcllem5.j (𝜑𝐽𝐼)
Assertion
Ref Expression
selvcllem5 (𝜑𝐹 ∈ (𝐸m 𝐼))
Distinct variable groups:   𝑥,𝐸   𝑥,𝐼   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑅(𝑥)   𝑇(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝐽(𝑥)   𝑉(𝑥)

Proof of Theorem selvcllem5
StepHypRef Expression
1 selvcllem5.e . . . 4 𝐸 = (Base‘𝑇)
21fvexi 6875 . . 3 𝐸 ∈ V
32a1i 11 . 2 (𝜑𝐸 ∈ V)
4 selvcllem5.i . 2 (𝜑𝐼𝑉)
5 selvcllem5.t . . . . . 6 𝑇 = (𝐽 mPoly 𝑈)
6 eqid 2730 . . . . . 6 (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈)
7 selvcllem5.j . . . . . . . 8 (𝜑𝐽𝐼)
84, 7ssexd 5282 . . . . . . 7 (𝜑𝐽 ∈ V)
98adantr 480 . . . . . 6 ((𝜑𝑥𝐽) → 𝐽 ∈ V)
10 selvcllem5.u . . . . . . . 8 𝑈 = ((𝐼𝐽) mPoly 𝑅)
114difexd 5289 . . . . . . . 8 (𝜑 → (𝐼𝐽) ∈ V)
12 selvcllem5.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
1312crngringd 20162 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
1410, 11, 13mplringd 21939 . . . . . . 7 (𝜑𝑈 ∈ Ring)
1514adantr 480 . . . . . 6 ((𝜑𝑥𝐽) → 𝑈 ∈ Ring)
16 simpr 484 . . . . . 6 ((𝜑𝑥𝐽) → 𝑥𝐽)
175, 6, 1, 9, 15, 16mvrcl 21908 . . . . 5 ((𝜑𝑥𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸)
1817adantlr 715 . . . 4 (((𝜑𝑥𝐼) ∧ 𝑥𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸)
19 eqid 2730 . . . . . . 7 (Base‘𝑈) = (Base‘𝑈)
20 selvcllem5.c . . . . . . 7 𝐶 = (algSc‘𝑇)
215, 1, 19, 20, 8, 14mplasclf 21979 . . . . . 6 (𝜑𝐶:(Base‘𝑈)⟶𝐸)
2221ad2antrr 726 . . . . 5 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝐶:(Base‘𝑈)⟶𝐸)
23 eqid 2730 . . . . . 6 ((𝐼𝐽) mVar 𝑅) = ((𝐼𝐽) mVar 𝑅)
2411ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (𝐼𝐽) ∈ V)
2513ad2antrr 726 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝑅 ∈ Ring)
26 eldif 3927 . . . . . . . 8 (𝑥 ∈ (𝐼𝐽) ↔ (𝑥𝐼 ∧ ¬ 𝑥𝐽))
2726biimpri 228 . . . . . . 7 ((𝑥𝐼 ∧ ¬ 𝑥𝐽) → 𝑥 ∈ (𝐼𝐽))
2827adantll 714 . . . . . 6 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → 𝑥 ∈ (𝐼𝐽))
2910, 23, 19, 24, 25, 28mvrcl 21908 . . . . 5 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (((𝐼𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈))
3022, 29ffvelcdmd 7060 . . . 4 (((𝜑𝑥𝐼) ∧ ¬ 𝑥𝐽) → (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸)
3118, 30ifclda 4527 . . 3 ((𝜑𝑥𝐼) → if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸)
32 selvcllem5.f . . 3 𝐹 = (𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))
3331, 32fmptd 7089 . 2 (𝜑𝐹:𝐼𝐸)
343, 4, 33elmapdd 8817 1 (𝜑𝐹 ∈ (𝐸m 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cdif 3914  wss 3917  ifcif 4491  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Basecbs 17186  Ringcrg 20149  CRingccrg 20150  algSccascl 21768   mVar cmvr 21821   mPoly cmpl 21822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827
This theorem is referenced by:  selvcl  42578  selvadd  42583  selvmul  42584
  Copyright terms: Public domain W3C validator