![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem5 | Structured version Visualization version GIF version |
Description: The fifth argument passed to evalSub is in the domain (a function πΌβΆπΈ). (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvcllem5.u | β’ π = ((πΌ β π½) mPoly π ) |
selvcllem5.t | β’ π = (π½ mPoly π) |
selvcllem5.c | β’ πΆ = (algScβπ) |
selvcllem5.e | β’ πΈ = (Baseβπ) |
selvcllem5.f | β’ πΉ = (π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), (πΆβ(((πΌ β π½) mVar π )βπ₯)))) |
selvcllem5.i | β’ (π β πΌ β π) |
selvcllem5.r | β’ (π β π β CRing) |
selvcllem5.j | β’ (π β π½ β πΌ) |
Ref | Expression |
---|---|
selvcllem5 | β’ (π β πΉ β (πΈ βm πΌ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem5.t | . . . . . 6 β’ π = (π½ mPoly π) | |
2 | eqid 2732 | . . . . . 6 β’ (π½ mVar π) = (π½ mVar π) | |
3 | selvcllem5.e | . . . . . 6 β’ πΈ = (Baseβπ) | |
4 | selvcllem5.i | . . . . . . . 8 β’ (π β πΌ β π) | |
5 | selvcllem5.j | . . . . . . . 8 β’ (π β π½ β πΌ) | |
6 | 4, 5 | ssexd 5323 | . . . . . . 7 β’ (π β π½ β V) |
7 | 6 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β π½) β π½ β V) |
8 | 4 | difexd 5328 | . . . . . . . 8 β’ (π β (πΌ β π½) β V) |
9 | selvcllem5.r | . . . . . . . . 9 β’ (π β π β CRing) | |
10 | crngring 20061 | . . . . . . . . 9 β’ (π β CRing β π β Ring) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 β’ (π β π β Ring) |
12 | selvcllem5.u | . . . . . . . . 9 β’ π = ((πΌ β π½) mPoly π ) | |
13 | 12 | mplring 21569 | . . . . . . . 8 β’ (((πΌ β π½) β V β§ π β Ring) β π β Ring) |
14 | 8, 11, 13 | syl2anc 584 | . . . . . . 7 β’ (π β π β Ring) |
15 | 14 | adantr 481 | . . . . . 6 β’ ((π β§ π₯ β π½) β π β Ring) |
16 | simpr 485 | . . . . . 6 β’ ((π β§ π₯ β π½) β π₯ β π½) | |
17 | 1, 2, 3, 7, 15, 16 | mvrcl 21542 | . . . . 5 β’ ((π β§ π₯ β π½) β ((π½ mVar π)βπ₯) β πΈ) |
18 | 17 | adantlr 713 | . . . 4 β’ (((π β§ π₯ β πΌ) β§ π₯ β π½) β ((π½ mVar π)βπ₯) β πΈ) |
19 | eqid 2732 | . . . . . . 7 β’ (Baseβπ) = (Baseβπ) | |
20 | selvcllem5.c | . . . . . . 7 β’ πΆ = (algScβπ) | |
21 | 1, 3, 19, 20, 6, 14 | mplasclf 21617 | . . . . . 6 β’ (π β πΆ:(Baseβπ)βΆπΈ) |
22 | 21 | ad2antrr 724 | . . . . 5 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β πΆ:(Baseβπ)βΆπΈ) |
23 | eqid 2732 | . . . . . 6 β’ ((πΌ β π½) mVar π ) = ((πΌ β π½) mVar π ) | |
24 | 8 | ad2antrr 724 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β (πΌ β π½) β V) |
25 | 11 | ad2antrr 724 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β π β Ring) |
26 | eldif 3957 | . . . . . . . 8 β’ (π₯ β (πΌ β π½) β (π₯ β πΌ β§ Β¬ π₯ β π½)) | |
27 | 26 | biimpri 227 | . . . . . . 7 β’ ((π₯ β πΌ β§ Β¬ π₯ β π½) β π₯ β (πΌ β π½)) |
28 | 27 | adantll 712 | . . . . . 6 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β π₯ β (πΌ β π½)) |
29 | 12, 23, 19, 24, 25, 28 | mvrcl 21542 | . . . . 5 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β (((πΌ β π½) mVar π )βπ₯) β (Baseβπ)) |
30 | 22, 29 | ffvelcdmd 7084 | . . . 4 β’ (((π β§ π₯ β πΌ) β§ Β¬ π₯ β π½) β (πΆβ(((πΌ β π½) mVar π )βπ₯)) β πΈ) |
31 | 18, 30 | ifclda 4562 | . . 3 β’ ((π β§ π₯ β πΌ) β if(π₯ β π½, ((π½ mVar π)βπ₯), (πΆβ(((πΌ β π½) mVar π )βπ₯))) β πΈ) |
32 | selvcllem5.f | . . 3 β’ πΉ = (π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), (πΆβ(((πΌ β π½) mVar π )βπ₯)))) | |
33 | 31, 32 | fmptd 7110 | . 2 β’ (π β πΉ:πΌβΆπΈ) |
34 | fvexd 6903 | . . . 4 β’ (π β (Baseβπ) β V) | |
35 | 3, 34 | eqeltrid 2837 | . . 3 β’ (π β πΈ β V) |
36 | 35, 4 | elmapd 8830 | . 2 β’ (π β (πΉ β (πΈ βm πΌ) β πΉ:πΌβΆπΈ)) |
37 | 33, 36 | mpbird 256 | 1 β’ (π β πΉ β (πΈ βm πΌ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β cdif 3944 β wss 3947 ifcif 4527 β¦ cmpt 5230 βΆwf 6536 βcfv 6540 (class class class)co 7405 βm cmap 8816 Basecbs 17140 Ringcrg 20049 CRingccrg 20050 algSccascl 21398 mVar cmvr 21449 mPoly cmpl 21450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7666 df-ofr 7667 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-pm 8819 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-ghm 19084 df-cntz 19175 df-cmn 19644 df-abl 19645 df-mgp 19982 df-ur 19999 df-ring 20051 df-cring 20052 df-subrg 20353 df-lmod 20465 df-lss 20535 df-ascl 21401 df-psr 21453 df-mvr 21454 df-mpl 21455 |
This theorem is referenced by: selvcl 41152 selvadd 41157 selvmul 41158 |
Copyright terms: Public domain | W3C validator |