| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem5 | Structured version Visualization version GIF version | ||
| Description: The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
| Ref | Expression |
|---|---|
| selvcllem5.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
| selvcllem5.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
| selvcllem5.c | ⊢ 𝐶 = (algSc‘𝑇) |
| selvcllem5.e | ⊢ 𝐸 = (Base‘𝑇) |
| selvcllem5.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
| selvcllem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| selvcllem5.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| selvcllem5.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| Ref | Expression |
|---|---|
| selvcllem5 | ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem5.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
| 2 | 1 | fvexi 6875 | . . 3 ⊢ 𝐸 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
| 4 | selvcllem5.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | selvcllem5.t | . . . . . 6 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈) | |
| 7 | selvcllem5.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 8 | 4, 7 | ssexd 5282 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ V) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ V) |
| 10 | selvcllem5.u | . . . . . . . 8 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
| 11 | 4 | difexd 5289 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
| 12 | selvcllem5.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 13 | 12 | crngringd 20162 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | 10, 11, 13 | mplringd 21939 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑈 ∈ Ring) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | |
| 17 | 5, 6, 1, 9, 15, 16 | mvrcl 21908 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
| 19 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 20 | selvcllem5.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
| 21 | 5, 1, 19, 20, 8, 14 | mplasclf 21979 | . . . . . 6 ⊢ (𝜑 → 𝐶:(Base‘𝑈)⟶𝐸) |
| 22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝐶:(Base‘𝑈)⟶𝐸) |
| 23 | eqid 2730 | . . . . . 6 ⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) | |
| 24 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐼 ∖ 𝐽) ∈ V) |
| 25 | 13 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑅 ∈ Ring) |
| 26 | eldif 3927 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽)) | |
| 27 | 26 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
| 28 | 27 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
| 29 | 10, 23, 19, 24, 25, 28 | mvrcl 21908 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈)) |
| 30 | 22, 29 | ffvelcdmd 7060 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸) |
| 31 | 18, 30 | ifclda 4527 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸) |
| 32 | selvcllem5.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
| 33 | 31, 32 | fmptd 7089 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶𝐸) |
| 34 | 3, 4, 33 | elmapdd 8817 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ⊆ wss 3917 ifcif 4491 ↦ cmpt 5191 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Basecbs 17186 Ringcrg 20149 CRingccrg 20150 algSccascl 21768 mVar cmvr 21821 mPoly cmpl 21822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-fzo 13623 df-seq 13974 df-hash 14303 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-gsum 17412 df-prds 17417 df-pws 17419 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-ghm 19152 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-lmod 20775 df-lss 20845 df-ascl 21771 df-psr 21825 df-mvr 21826 df-mpl 21827 |
| This theorem is referenced by: selvcl 42578 selvadd 42583 selvmul 42584 |
| Copyright terms: Public domain | W3C validator |