![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem5 | Structured version Visualization version GIF version |
Description: The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvcllem5.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvcllem5.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvcllem5.c | ⊢ 𝐶 = (algSc‘𝑇) |
selvcllem5.e | ⊢ 𝐸 = (Base‘𝑇) |
selvcllem5.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
selvcllem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvcllem5.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvcllem5.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
Ref | Expression |
---|---|
selvcllem5 | ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem5.t | . . . . . 6 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
2 | eqid 2731 | . . . . . 6 ⊢ (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈) | |
3 | selvcllem5.e | . . . . . 6 ⊢ 𝐸 = (Base‘𝑇) | |
4 | selvcllem5.i | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | selvcllem5.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
6 | 4, 5 | ssexd 5317 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ V) |
7 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ V) |
8 | 4 | difexd 5322 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
9 | selvcllem5.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
10 | crngring 20026 | . . . . . . . . 9 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
11 | 9, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
12 | selvcllem5.u | . . . . . . . . 9 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
13 | 12 | mplring 21506 | . . . . . . . 8 ⊢ (((𝐼 ∖ 𝐽) ∈ V ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) |
14 | 8, 11, 13 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ Ring) |
15 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑈 ∈ Ring) |
16 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | |
17 | 1, 2, 3, 7, 15, 16 | mvrcl 21503 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
18 | 17 | adantlr 713 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
19 | eqid 2731 | . . . . . . 7 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | selvcllem5.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
21 | 1, 3, 19, 20, 6, 14 | mplasclf 21555 | . . . . . 6 ⊢ (𝜑 → 𝐶:(Base‘𝑈)⟶𝐸) |
22 | 21 | ad2antrr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝐶:(Base‘𝑈)⟶𝐸) |
23 | eqid 2731 | . . . . . 6 ⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) | |
24 | 8 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐼 ∖ 𝐽) ∈ V) |
25 | 11 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑅 ∈ Ring) |
26 | eldif 3954 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽)) | |
27 | 26 | biimpri 227 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
28 | 27 | adantll 712 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
29 | 12, 23, 19, 24, 25, 28 | mvrcl 21503 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈)) |
30 | 22, 29 | ffvelcdmd 7072 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸) |
31 | 18, 30 | ifclda 4557 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸) |
32 | selvcllem5.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
33 | 31, 32 | fmptd 7098 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶𝐸) |
34 | fvexd 6893 | . . . 4 ⊢ (𝜑 → (Base‘𝑇) ∈ V) | |
35 | 3, 34 | eqeltrid 2836 | . . 3 ⊢ (𝜑 → 𝐸 ∈ V) |
36 | 35, 4 | elmapd 8817 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐸 ↑m 𝐼) ↔ 𝐹:𝐼⟶𝐸)) |
37 | 33, 36 | mpbird 256 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3473 ∖ cdif 3941 ⊆ wss 3944 ifcif 4522 ↦ cmpt 5224 ⟶wf 6528 ‘cfv 6532 (class class class)co 7393 ↑m cmap 8803 Basecbs 17126 Ringcrg 20014 CRingccrg 20015 algSccascl 21340 mVar cmvr 21389 mPoly cmpl 21390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-isom 6541 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-ofr 7654 df-om 7839 df-1st 7957 df-2nd 7958 df-supp 8129 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9345 df-sup 9419 df-oi 9487 df-card 9916 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-7 12262 df-8 12263 df-9 12264 df-n0 12455 df-z 12541 df-dec 12660 df-uz 12805 df-fz 13467 df-fzo 13610 df-seq 13949 df-hash 14273 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17369 df-gsum 17370 df-prds 17375 df-pws 17377 df-mre 17512 df-mrc 17513 df-acs 17515 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-mhm 18647 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-mulg 18923 df-subg 18975 df-ghm 19056 df-cntz 19147 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-cring 20017 df-subrg 20310 df-lmod 20422 df-lss 20492 df-ascl 21343 df-psr 21393 df-mvr 21394 df-mpl 21395 |
This theorem is referenced by: selvcl 40947 selvadd 40949 selvmul 40950 |
Copyright terms: Public domain | W3C validator |