![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem5 | Structured version Visualization version GIF version |
Description: The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvcllem5.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvcllem5.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvcllem5.c | ⊢ 𝐶 = (algSc‘𝑇) |
selvcllem5.e | ⊢ 𝐸 = (Base‘𝑇) |
selvcllem5.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
selvcllem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvcllem5.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvcllem5.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
Ref | Expression |
---|---|
selvcllem5 | ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcllem5.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
2 | 1 | fvexi 6920 | . . 3 ⊢ 𝐸 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
4 | selvcllem5.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
5 | selvcllem5.t | . . . . . 6 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
6 | eqid 2734 | . . . . . 6 ⊢ (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈) | |
7 | selvcllem5.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
8 | 4, 7 | ssexd 5329 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ V) |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ V) |
10 | selvcllem5.u | . . . . . . . 8 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
11 | 4 | difexd 5336 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
12 | selvcllem5.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
13 | 12 | crngringd 20263 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
14 | 10, 11, 13 | mplringd 22060 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ Ring) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑈 ∈ Ring) |
16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | |
17 | 5, 6, 1, 9, 15, 16 | mvrcl 22029 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
19 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
20 | selvcllem5.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
21 | 5, 1, 19, 20, 8, 14 | mplasclf 22106 | . . . . . 6 ⊢ (𝜑 → 𝐶:(Base‘𝑈)⟶𝐸) |
22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝐶:(Base‘𝑈)⟶𝐸) |
23 | eqid 2734 | . . . . . 6 ⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) | |
24 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐼 ∖ 𝐽) ∈ V) |
25 | 13 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑅 ∈ Ring) |
26 | eldif 3972 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽)) | |
27 | 26 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
28 | 27 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
29 | 10, 23, 19, 24, 25, 28 | mvrcl 22029 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈)) |
30 | 22, 29 | ffvelcdmd 7104 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸) |
31 | 18, 30 | ifclda 4565 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸) |
32 | selvcllem5.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
33 | 31, 32 | fmptd 7133 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶𝐸) |
34 | 3, 4, 33 | elmapdd 8879 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∖ cdif 3959 ⊆ wss 3962 ifcif 4530 ↦ cmpt 5230 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 Basecbs 17244 Ringcrg 20250 CRingccrg 20251 algSccascl 21889 mVar cmvr 21942 mPoly cmpl 21943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-cring 20253 df-subrng 20562 df-subrg 20586 df-lmod 20876 df-lss 20947 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 |
This theorem is referenced by: selvcl 42569 selvadd 42574 selvmul 42575 |
Copyright terms: Public domain | W3C validator |