| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcllem5 | Structured version Visualization version GIF version | ||
| Description: The fifth argument passed to evalSub is in the domain (a function 𝐼⟶𝐸). (Contributed by SN, 22-Feb-2024.) |
| Ref | Expression |
|---|---|
| selvcllem5.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
| selvcllem5.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
| selvcllem5.c | ⊢ 𝐶 = (algSc‘𝑇) |
| selvcllem5.e | ⊢ 𝐸 = (Base‘𝑇) |
| selvcllem5.f | ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) |
| selvcllem5.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| selvcllem5.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| selvcllem5.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| Ref | Expression |
|---|---|
| selvcllem5 | ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcllem5.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
| 2 | 1 | fvexi 6842 | . . 3 ⊢ 𝐸 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐸 ∈ V) |
| 4 | selvcllem5.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 5 | selvcllem5.t | . . . . . 6 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
| 6 | eqid 2733 | . . . . . 6 ⊢ (𝐽 mVar 𝑈) = (𝐽 mVar 𝑈) | |
| 7 | selvcllem5.j | . . . . . . . 8 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 8 | 4, 7 | ssexd 5264 | . . . . . . 7 ⊢ (𝜑 → 𝐽 ∈ V) |
| 9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐽 ∈ V) |
| 10 | selvcllem5.u | . . . . . . . 8 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
| 11 | 4 | difexd 5271 | . . . . . . . 8 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
| 12 | selvcllem5.r | . . . . . . . . 9 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 13 | 12 | crngringd 20166 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 14 | 10, 11, 13 | mplringd 21961 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ Ring) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑈 ∈ Ring) |
| 16 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝑥 ∈ 𝐽) | |
| 17 | 5, 6, 1, 9, 15, 16 | mvrcl 21930 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
| 18 | 17 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑥 ∈ 𝐽) → ((𝐽 mVar 𝑈)‘𝑥) ∈ 𝐸) |
| 19 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 20 | selvcllem5.c | . . . . . . 7 ⊢ 𝐶 = (algSc‘𝑇) | |
| 21 | 5, 1, 19, 20, 8, 14 | mplasclf 22001 | . . . . . 6 ⊢ (𝜑 → 𝐶:(Base‘𝑈)⟶𝐸) |
| 22 | 21 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝐶:(Base‘𝑈)⟶𝐸) |
| 23 | eqid 2733 | . . . . . 6 ⊢ ((𝐼 ∖ 𝐽) mVar 𝑅) = ((𝐼 ∖ 𝐽) mVar 𝑅) | |
| 24 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐼 ∖ 𝐽) ∈ V) |
| 25 | 13 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑅 ∈ Ring) |
| 26 | eldif 3908 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐼 ∖ 𝐽) ↔ (𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽)) | |
| 27 | 26 | biimpri 228 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
| 28 | 27 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → 𝑥 ∈ (𝐼 ∖ 𝐽)) |
| 29 | 10, 23, 19, 24, 25, 28 | mvrcl 21930 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥) ∈ (Base‘𝑈)) |
| 30 | 22, 29 | ffvelcdmd 7024 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ ¬ 𝑥 ∈ 𝐽) → (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)) ∈ 𝐸) |
| 31 | 18, 30 | ifclda 4510 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))) ∈ 𝐸) |
| 32 | selvcllem5.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
| 33 | 31, 32 | fmptd 7053 | . 2 ⊢ (𝜑 → 𝐹:𝐼⟶𝐸) |
| 34 | 3, 4, 33 | elmapdd 8771 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐸 ↑m 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4474 ↦ cmpt 5174 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Basecbs 17122 Ringcrg 20153 CRingccrg 20154 algSccascl 21791 mVar cmvr 21844 mPoly cmpl 21845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-0g 17347 df-gsum 17348 df-prds 17353 df-pws 17355 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-mulg 18983 df-subg 19038 df-ghm 19127 df-cntz 19231 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-cring 20156 df-subrng 20463 df-subrg 20487 df-lmod 20797 df-lss 20867 df-ascl 21794 df-psr 21848 df-mvr 21849 df-mpl 21850 |
| This theorem is referenced by: selvcl 42701 selvadd 42706 selvmul 42707 |
| Copyright terms: Public domain | W3C validator |