Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfv Structured version   Visualization version   GIF version

Theorem tocycfv 33064
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfv (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))

Proof of Theorem tocycfv
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocycfv.d . . 3 (𝜑𝐷𝑉)
2 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
32tocycval 33063 . . 3 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
41, 3syl 17 . 2 (𝜑𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
5 simpr 484 . . . . . 6 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
65rneqd 5884 . . . . 5 ((𝜑𝑤 = 𝑊) → ran 𝑤 = ran 𝑊)
76difeq2d 4079 . . . 4 ((𝜑𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊))
87reseq2d 5934 . . 3 ((𝜑𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
95oveq1d 7368 . . . 4 ((𝜑𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1))
105cnveqd 5822 . . . 4 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
119, 10coeq12d 5811 . . 3 ((𝜑𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ 𝑤) = ((𝑊 cyclShift 1) ∘ 𝑊))
128, 11uneq12d 4122 . 2 ((𝜑𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
13 id 22 . . . 4 (𝑢 = 𝑊𝑢 = 𝑊)
14 dmeq 5850 . . . 4 (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊)
15 eqidd 2730 . . . 4 (𝑢 = 𝑊𝐷 = 𝐷)
1613, 14, 15f1eq123d 6760 . . 3 (𝑢 = 𝑊 → (𝑢:dom 𝑢1-1𝐷𝑊:dom 𝑊1-1𝐷))
17 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
18 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
1916, 17, 18elrabd 3652 . 2 (𝜑𝑊 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
201difexd 5273 . . . 4 (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V)
2120resiexd 7156 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V)
22 cshwcl 14722 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷)
2317, 22syl 17 . . . 4 (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷)
24 cnvexg 7864 . . . . 5 (𝑊 ∈ Word 𝐷𝑊 ∈ V)
2517, 24syl 17 . . . 4 (𝜑𝑊 ∈ V)
26 coexg 7869 . . . 4 (((𝑊 cyclShift 1) ∈ Word 𝐷𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
2723, 25, 26syl2anc 584 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
28 unexg 7683 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
2921, 27, 28syl2anc 584 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
304, 12, 19, 29fvmptd 6941 1 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cmpt 5176   I cid 5517  ccnv 5622  dom cdm 5623  ran crn 5624  cres 5625  ccom 5627  1-1wf1 6483  cfv 6486  (class class class)co 7353  1c1 11029  Word cword 14438   cyclShift ccsh 14712  toCycctocyc 33061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713  df-tocyc 33062
This theorem is referenced by:  tocycfvres1  33065  tocycfvres2  33066  cycpmfvlem  33067  cycpmfv3  33070  cycpmcl  33071  tocyc01  33073  cycpm2tr  33074  cycpmconjv  33097  cycpmrn  33098
  Copyright terms: Public domain W3C validator