Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfv | Structured version Visualization version GIF version |
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
Ref | Expression |
---|---|
tocycfv | ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
2 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
3 | 2 | tocycval 31375 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
5 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊) | |
6 | 5 | rneqd 5847 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ran 𝑤 = ran 𝑊) |
7 | 6 | difeq2d 4057 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊)) |
8 | 7 | reseq2d 5891 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
9 | 5 | oveq1d 7290 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1)) |
10 | 5 | cnveqd 5784 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ◡𝑤 = ◡𝑊) |
11 | 9, 10 | coeq12d 5773 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ ◡𝑤) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
12 | 8, 11 | uneq12d 4098 | . 2 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
13 | id 22 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝑢 = 𝑊) | |
14 | dmeq 5812 | . . . 4 ⊢ (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊) | |
15 | eqidd 2739 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝐷 = 𝐷) | |
16 | 13, 14, 15 | f1eq123d 6708 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢:dom 𝑢–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
17 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
18 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
19 | 16, 17, 18 | elrabd 3626 | . 2 ⊢ (𝜑 → 𝑊 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
20 | 1 | difexd 5253 | . . . 4 ⊢ (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V) |
21 | 20 | resiexd 7092 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V) |
22 | cshwcl 14511 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷) | |
23 | 17, 22 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷) |
24 | cnvexg 7771 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → ◡𝑊 ∈ V) | |
25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑊 ∈ V) |
26 | coexg 7776 | . . . 4 ⊢ (((𝑊 cyclShift 1) ∈ Word 𝐷 ∧ ◡𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) | |
27 | 23, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) |
28 | unexg 7599 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) | |
29 | 21, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) |
30 | 4, 12, 19, 29 | fvmptd 6882 | 1 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ↦ cmpt 5157 I cid 5488 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 1c1 10872 Word cword 14217 cyclShift ccsh 14501 toCycctocyc 31373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-concat 14274 df-substr 14354 df-pfx 14384 df-csh 14502 df-tocyc 31374 |
This theorem is referenced by: tocycfvres1 31377 tocycfvres2 31378 cycpmfvlem 31379 cycpmfv3 31382 cycpmcl 31383 tocyc01 31385 cycpm2tr 31386 cycpmconjv 31409 cycpmrn 31410 |
Copyright terms: Public domain | W3C validator |