![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfv | Structured version Visualization version GIF version |
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | β’ πΆ = (toCycβπ·) |
tocycfv.d | β’ (π β π· β π) |
tocycfv.w | β’ (π β π β Word π·) |
tocycfv.1 | β’ (π β π:dom πβ1-1βπ·) |
Ref | Expression |
---|---|
tocycfv | β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycfv.d | . . 3 β’ (π β π· β π) | |
2 | tocycval.1 | . . . 4 β’ πΆ = (toCycβπ·) | |
3 | 2 | tocycval 32850 | . . 3 β’ (π· β π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
4 | 1, 3 | syl 17 | . 2 β’ (π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
5 | simpr 483 | . . . . . 6 β’ ((π β§ π€ = π) β π€ = π) | |
6 | 5 | rneqd 5944 | . . . . 5 β’ ((π β§ π€ = π) β ran π€ = ran π) |
7 | 6 | difeq2d 4122 | . . . 4 β’ ((π β§ π€ = π) β (π· β ran π€) = (π· β ran π)) |
8 | 7 | reseq2d 5989 | . . 3 β’ ((π β§ π€ = π) β ( I βΎ (π· β ran π€)) = ( I βΎ (π· β ran π))) |
9 | 5 | oveq1d 7441 | . . . 4 β’ ((π β§ π€ = π) β (π€ cyclShift 1) = (π cyclShift 1)) |
10 | 5 | cnveqd 5882 | . . . 4 β’ ((π β§ π€ = π) β β‘π€ = β‘π) |
11 | 9, 10 | coeq12d 5871 | . . 3 β’ ((π β§ π€ = π) β ((π€ cyclShift 1) β β‘π€) = ((π cyclShift 1) β β‘π)) |
12 | 8, 11 | uneq12d 4165 | . 2 β’ ((π β§ π€ = π) β (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
13 | id 22 | . . . 4 β’ (π’ = π β π’ = π) | |
14 | dmeq 5910 | . . . 4 β’ (π’ = π β dom π’ = dom π) | |
15 | eqidd 2729 | . . . 4 β’ (π’ = π β π· = π·) | |
16 | 13, 14, 15 | f1eq123d 6836 | . . 3 β’ (π’ = π β (π’:dom π’β1-1βπ· β π:dom πβ1-1βπ·)) |
17 | tocycfv.w | . . 3 β’ (π β π β Word π·) | |
18 | tocycfv.1 | . . 3 β’ (π β π:dom πβ1-1βπ·) | |
19 | 16, 17, 18 | elrabd 3686 | . 2 β’ (π β π β {π’ β Word π· β£ π’:dom π’β1-1βπ·}) |
20 | 1 | difexd 5335 | . . . 4 β’ (π β (π· β ran π) β V) |
21 | 20 | resiexd 7234 | . . 3 β’ (π β ( I βΎ (π· β ran π)) β V) |
22 | cshwcl 14788 | . . . . 5 β’ (π β Word π· β (π cyclShift 1) β Word π·) | |
23 | 17, 22 | syl 17 | . . . 4 β’ (π β (π cyclShift 1) β Word π·) |
24 | cnvexg 7938 | . . . . 5 β’ (π β Word π· β β‘π β V) | |
25 | 17, 24 | syl 17 | . . . 4 β’ (π β β‘π β V) |
26 | coexg 7943 | . . . 4 β’ (((π cyclShift 1) β Word π· β§ β‘π β V) β ((π cyclShift 1) β β‘π) β V) | |
27 | 23, 25, 26 | syl2anc 582 | . . 3 β’ (π β ((π cyclShift 1) β β‘π) β V) |
28 | unexg 7757 | . . 3 β’ ((( I βΎ (π· β ran π)) β V β§ ((π cyclShift 1) β β‘π) β V) β (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) β V) | |
29 | 21, 27, 28 | syl2anc 582 | . 2 β’ (π β (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) β V) |
30 | 4, 12, 19, 29 | fvmptd 7017 | 1 β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3430 Vcvv 3473 β cdif 3946 βͺ cun 3947 β¦ cmpt 5235 I cid 5579 β‘ccnv 5681 dom cdm 5682 ran crn 5683 βΎ cres 5684 β ccom 5686 β1-1βwf1 6550 βcfv 6553 (class class class)co 7426 1c1 11147 Word cword 14504 cyclShift ccsh 14778 toCycctocyc 32848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-substr 14631 df-pfx 14661 df-csh 14779 df-tocyc 32849 |
This theorem is referenced by: tocycfvres1 32852 tocycfvres2 32853 cycpmfvlem 32854 cycpmfv3 32857 cycpmcl 32858 tocyc01 32860 cycpm2tr 32861 cycpmconjv 32884 cycpmrn 32885 |
Copyright terms: Public domain | W3C validator |