Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfv | Structured version Visualization version GIF version |
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
Ref | Expression |
---|---|
tocycfv | ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
2 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
3 | 2 | tocycval 31660 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
5 | simpr 486 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊) | |
6 | 5 | rneqd 5884 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ran 𝑤 = ran 𝑊) |
7 | 6 | difeq2d 4074 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊)) |
8 | 7 | reseq2d 5928 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
9 | 5 | oveq1d 7357 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1)) |
10 | 5 | cnveqd 5822 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ◡𝑤 = ◡𝑊) |
11 | 9, 10 | coeq12d 5811 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ ◡𝑤) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
12 | 8, 11 | uneq12d 4116 | . 2 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
13 | id 22 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝑢 = 𝑊) | |
14 | dmeq 5850 | . . . 4 ⊢ (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊) | |
15 | eqidd 2738 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝐷 = 𝐷) | |
16 | 13, 14, 15 | f1eq123d 6764 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢:dom 𝑢–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
17 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
18 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
19 | 16, 17, 18 | elrabd 3640 | . 2 ⊢ (𝜑 → 𝑊 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
20 | 1 | difexd 5278 | . . . 4 ⊢ (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V) |
21 | 20 | resiexd 7153 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V) |
22 | cshwcl 14610 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷) | |
23 | 17, 22 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷) |
24 | cnvexg 7844 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → ◡𝑊 ∈ V) | |
25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑊 ∈ V) |
26 | coexg 7849 | . . . 4 ⊢ (((𝑊 cyclShift 1) ∈ Word 𝐷 ∧ ◡𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) | |
27 | 23, 25, 26 | syl2anc 585 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) |
28 | unexg 7666 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) | |
29 | 21, 27, 28 | syl2anc 585 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) |
30 | 4, 12, 19, 29 | fvmptd 6943 | 1 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 Vcvv 3442 ∖ cdif 3899 ∪ cun 3900 ↦ cmpt 5180 I cid 5522 ◡ccnv 5624 dom cdm 5625 ran crn 5626 ↾ cres 5627 ∘ ccom 5629 –1-1→wf1 6481 ‘cfv 6484 (class class class)co 7342 1c1 10978 Word cword 14322 cyclShift ccsh 14600 toCycctocyc 31658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-fzo 13489 df-hash 14151 df-word 14323 df-concat 14379 df-substr 14453 df-pfx 14483 df-csh 14601 df-tocyc 31659 |
This theorem is referenced by: tocycfvres1 31662 tocycfvres2 31663 cycpmfvlem 31664 cycpmfv3 31667 cycpmcl 31668 tocyc01 31670 cycpm2tr 31671 cycpmconjv 31694 cycpmrn 31695 |
Copyright terms: Public domain | W3C validator |