Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfv Structured version   Visualization version   GIF version

Theorem tocycfv 31376
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfv (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))

Proof of Theorem tocycfv
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocycfv.d . . 3 (𝜑𝐷𝑉)
2 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
32tocycval 31375 . . 3 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
41, 3syl 17 . 2 (𝜑𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
5 simpr 485 . . . . . 6 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
65rneqd 5847 . . . . 5 ((𝜑𝑤 = 𝑊) → ran 𝑤 = ran 𝑊)
76difeq2d 4057 . . . 4 ((𝜑𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊))
87reseq2d 5891 . . 3 ((𝜑𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
95oveq1d 7290 . . . 4 ((𝜑𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1))
105cnveqd 5784 . . . 4 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
119, 10coeq12d 5773 . . 3 ((𝜑𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ 𝑤) = ((𝑊 cyclShift 1) ∘ 𝑊))
128, 11uneq12d 4098 . 2 ((𝜑𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
13 id 22 . . . 4 (𝑢 = 𝑊𝑢 = 𝑊)
14 dmeq 5812 . . . 4 (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊)
15 eqidd 2739 . . . 4 (𝑢 = 𝑊𝐷 = 𝐷)
1613, 14, 15f1eq123d 6708 . . 3 (𝑢 = 𝑊 → (𝑢:dom 𝑢1-1𝐷𝑊:dom 𝑊1-1𝐷))
17 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
18 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
1916, 17, 18elrabd 3626 . 2 (𝜑𝑊 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
201difexd 5253 . . . 4 (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V)
2120resiexd 7092 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V)
22 cshwcl 14511 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷)
2317, 22syl 17 . . . 4 (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷)
24 cnvexg 7771 . . . . 5 (𝑊 ∈ Word 𝐷𝑊 ∈ V)
2517, 24syl 17 . . . 4 (𝜑𝑊 ∈ V)
26 coexg 7776 . . . 4 (((𝑊 cyclShift 1) ∈ Word 𝐷𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
2723, 25, 26syl2anc 584 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
28 unexg 7599 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
2921, 27, 28syl2anc 584 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
304, 12, 19, 29fvmptd 6882 1 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cmpt 5157   I cid 5488  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  1-1wf1 6430  cfv 6433  (class class class)co 7275  1c1 10872  Word cword 14217   cyclShift ccsh 14501  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-tocyc 31374
This theorem is referenced by:  tocycfvres1  31377  tocycfvres2  31378  cycpmfvlem  31379  cycpmfv3  31382  cycpmcl  31383  tocyc01  31385  cycpm2tr  31386  cycpmconjv  31409  cycpmrn  31410
  Copyright terms: Public domain W3C validator