![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfv | Structured version Visualization version GIF version |
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | β’ πΆ = (toCycβπ·) |
tocycfv.d | β’ (π β π· β π) |
tocycfv.w | β’ (π β π β Word π·) |
tocycfv.1 | β’ (π β π:dom πβ1-1βπ·) |
Ref | Expression |
---|---|
tocycfv | β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycfv.d | . . 3 β’ (π β π· β π) | |
2 | tocycval.1 | . . . 4 β’ πΆ = (toCycβπ·) | |
3 | 2 | tocycval 32770 | . . 3 β’ (π· β π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
4 | 1, 3 | syl 17 | . 2 β’ (π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
5 | simpr 484 | . . . . . 6 β’ ((π β§ π€ = π) β π€ = π) | |
6 | 5 | rneqd 5930 | . . . . 5 β’ ((π β§ π€ = π) β ran π€ = ran π) |
7 | 6 | difeq2d 4117 | . . . 4 β’ ((π β§ π€ = π) β (π· β ran π€) = (π· β ran π)) |
8 | 7 | reseq2d 5974 | . . 3 β’ ((π β§ π€ = π) β ( I βΎ (π· β ran π€)) = ( I βΎ (π· β ran π))) |
9 | 5 | oveq1d 7419 | . . . 4 β’ ((π β§ π€ = π) β (π€ cyclShift 1) = (π cyclShift 1)) |
10 | 5 | cnveqd 5868 | . . . 4 β’ ((π β§ π€ = π) β β‘π€ = β‘π) |
11 | 9, 10 | coeq12d 5857 | . . 3 β’ ((π β§ π€ = π) β ((π€ cyclShift 1) β β‘π€) = ((π cyclShift 1) β β‘π)) |
12 | 8, 11 | uneq12d 4159 | . 2 β’ ((π β§ π€ = π) β (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
13 | id 22 | . . . 4 β’ (π’ = π β π’ = π) | |
14 | dmeq 5896 | . . . 4 β’ (π’ = π β dom π’ = dom π) | |
15 | eqidd 2727 | . . . 4 β’ (π’ = π β π· = π·) | |
16 | 13, 14, 15 | f1eq123d 6818 | . . 3 β’ (π’ = π β (π’:dom π’β1-1βπ· β π:dom πβ1-1βπ·)) |
17 | tocycfv.w | . . 3 β’ (π β π β Word π·) | |
18 | tocycfv.1 | . . 3 β’ (π β π:dom πβ1-1βπ·) | |
19 | 16, 17, 18 | elrabd 3680 | . 2 β’ (π β π β {π’ β Word π· β£ π’:dom π’β1-1βπ·}) |
20 | 1 | difexd 5322 | . . . 4 β’ (π β (π· β ran π) β V) |
21 | 20 | resiexd 7212 | . . 3 β’ (π β ( I βΎ (π· β ran π)) β V) |
22 | cshwcl 14751 | . . . . 5 β’ (π β Word π· β (π cyclShift 1) β Word π·) | |
23 | 17, 22 | syl 17 | . . . 4 β’ (π β (π cyclShift 1) β Word π·) |
24 | cnvexg 7911 | . . . . 5 β’ (π β Word π· β β‘π β V) | |
25 | 17, 24 | syl 17 | . . . 4 β’ (π β β‘π β V) |
26 | coexg 7916 | . . . 4 β’ (((π cyclShift 1) β Word π· β§ β‘π β V) β ((π cyclShift 1) β β‘π) β V) | |
27 | 23, 25, 26 | syl2anc 583 | . . 3 β’ (π β ((π cyclShift 1) β β‘π) β V) |
28 | unexg 7732 | . . 3 β’ ((( I βΎ (π· β ran π)) β V β§ ((π cyclShift 1) β β‘π) β V) β (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) β V) | |
29 | 21, 27, 28 | syl2anc 583 | . 2 β’ (π β (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π)) β V) |
30 | 4, 12, 19, 29 | fvmptd 6998 | 1 β’ (π β (πΆβπ) = (( I βΎ (π· β ran π)) βͺ ((π cyclShift 1) β β‘π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {crab 3426 Vcvv 3468 β cdif 3940 βͺ cun 3941 β¦ cmpt 5224 I cid 5566 β‘ccnv 5668 dom cdm 5669 ran crn 5670 βΎ cres 5671 β ccom 5673 β1-1βwf1 6533 βcfv 6536 (class class class)co 7404 1c1 11110 Word cword 14467 cyclShift ccsh 14741 toCycctocyc 32768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-fzo 13631 df-hash 14293 df-word 14468 df-concat 14524 df-substr 14594 df-pfx 14624 df-csh 14742 df-tocyc 32769 |
This theorem is referenced by: tocycfvres1 32772 tocycfvres2 32773 cycpmfvlem 32774 cycpmfv3 32777 cycpmcl 32778 tocyc01 32780 cycpm2tr 32781 cycpmconjv 32804 cycpmrn 32805 |
Copyright terms: Public domain | W3C validator |