| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycfv | Structured version Visualization version GIF version | ||
| Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| tocycfv.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| tocycfv.w | ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) |
| tocycfv.1 | ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) |
| Ref | Expression |
|---|---|
| tocycfv | ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycfv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 2 | tocycval.1 | . . . 4 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 3 | 2 | tocycval 33086 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → 𝑤 = 𝑊) | |
| 6 | 5 | rneqd 5884 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ran 𝑤 = ran 𝑊) |
| 7 | 6 | difeq2d 4075 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊)) |
| 8 | 7 | reseq2d 5934 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊))) |
| 9 | 5 | oveq1d 7369 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1)) |
| 10 | 5 | cnveqd 5821 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ◡𝑤 = ◡𝑊) |
| 11 | 9, 10 | coeq12d 5810 | . . 3 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ ◡𝑤) = ((𝑊 cyclShift 1) ∘ ◡𝑊)) |
| 12 | 8, 11 | uneq12d 4118 | . 2 ⊢ ((𝜑 ∧ 𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| 13 | id 22 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝑢 = 𝑊) | |
| 14 | dmeq 5849 | . . . 4 ⊢ (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊) | |
| 15 | eqidd 2734 | . . . 4 ⊢ (𝑢 = 𝑊 → 𝐷 = 𝐷) | |
| 16 | 13, 14, 15 | f1eq123d 6762 | . . 3 ⊢ (𝑢 = 𝑊 → (𝑢:dom 𝑢–1-1→𝐷 ↔ 𝑊:dom 𝑊–1-1→𝐷)) |
| 17 | tocycfv.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) | |
| 18 | tocycfv.1 | . . 3 ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) | |
| 19 | 16, 17, 18 | elrabd 3645 | . 2 ⊢ (𝜑 → 𝑊 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
| 20 | 1 | difexd 5273 | . . . 4 ⊢ (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V) |
| 21 | 20 | resiexd 7158 | . . 3 ⊢ (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V) |
| 22 | cshwcl 14709 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷) | |
| 23 | 17, 22 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷) |
| 24 | cnvexg 7862 | . . . . 5 ⊢ (𝑊 ∈ Word 𝐷 → ◡𝑊 ∈ V) | |
| 25 | 17, 24 | syl 17 | . . . 4 ⊢ (𝜑 → ◡𝑊 ∈ V) |
| 26 | coexg 7867 | . . . 4 ⊢ (((𝑊 cyclShift 1) ∈ Word 𝐷 ∧ ◡𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) | |
| 27 | 23, 25, 26 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) |
| 28 | unexg 7684 | . . 3 ⊢ ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ ◡𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) | |
| 29 | 21, 27, 28 | syl2anc 584 | . 2 ⊢ (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊)) ∈ V) |
| 30 | 4, 12, 19, 29 | fvmptd 6944 | 1 ⊢ (𝜑 → (𝐶‘𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ ◡𝑊))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ↦ cmpt 5176 I cid 5515 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ↾ cres 5623 ∘ ccom 5625 –1-1→wf1 6485 ‘cfv 6488 (class class class)co 7354 1c1 11016 Word cword 14424 cyclShift ccsh 14699 toCycctocyc 33084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-substr 14553 df-pfx 14583 df-csh 14700 df-tocyc 33085 |
| This theorem is referenced by: tocycfvres1 33088 tocycfvres2 33089 cycpmfvlem 33090 cycpmfv3 33093 cycpmcl 33094 tocyc01 33096 cycpm2tr 33097 cycpmconjv 33120 cycpmrn 33121 |
| Copyright terms: Public domain | W3C validator |