Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfv Structured version   Visualization version   GIF version

Theorem tocycfv 31661
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfv (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))

Proof of Theorem tocycfv
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocycfv.d . . 3 (𝜑𝐷𝑉)
2 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
32tocycval 31660 . . 3 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
41, 3syl 17 . 2 (𝜑𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
5 simpr 486 . . . . . 6 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
65rneqd 5884 . . . . 5 ((𝜑𝑤 = 𝑊) → ran 𝑤 = ran 𝑊)
76difeq2d 4074 . . . 4 ((𝜑𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊))
87reseq2d 5928 . . 3 ((𝜑𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
95oveq1d 7357 . . . 4 ((𝜑𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1))
105cnveqd 5822 . . . 4 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
119, 10coeq12d 5811 . . 3 ((𝜑𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ 𝑤) = ((𝑊 cyclShift 1) ∘ 𝑊))
128, 11uneq12d 4116 . 2 ((𝜑𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
13 id 22 . . . 4 (𝑢 = 𝑊𝑢 = 𝑊)
14 dmeq 5850 . . . 4 (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊)
15 eqidd 2738 . . . 4 (𝑢 = 𝑊𝐷 = 𝐷)
1613, 14, 15f1eq123d 6764 . . 3 (𝑢 = 𝑊 → (𝑢:dom 𝑢1-1𝐷𝑊:dom 𝑊1-1𝐷))
17 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
18 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
1916, 17, 18elrabd 3640 . 2 (𝜑𝑊 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
201difexd 5278 . . . 4 (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V)
2120resiexd 7153 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V)
22 cshwcl 14610 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷)
2317, 22syl 17 . . . 4 (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷)
24 cnvexg 7844 . . . . 5 (𝑊 ∈ Word 𝐷𝑊 ∈ V)
2517, 24syl 17 . . . 4 (𝜑𝑊 ∈ V)
26 coexg 7849 . . . 4 (((𝑊 cyclShift 1) ∈ Word 𝐷𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
2723, 25, 26syl2anc 585 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
28 unexg 7666 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
2921, 27, 28syl2anc 585 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
304, 12, 19, 29fvmptd 6943 1 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1541  wcel 2106  {crab 3404  Vcvv 3442  cdif 3899  cun 3900  cmpt 5180   I cid 5522  ccnv 5624  dom cdm 5625  ran crn 5626  cres 5627  ccom 5629  1-1wf1 6481  cfv 6484  (class class class)co 7342  1c1 10978  Word cword 14322   cyclShift ccsh 14600  toCycctocyc 31658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-er 8574  df-map 8693  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-fz 13346  df-fzo 13489  df-hash 14151  df-word 14323  df-concat 14379  df-substr 14453  df-pfx 14483  df-csh 14601  df-tocyc 31659
This theorem is referenced by:  tocycfvres1  31662  tocycfvres2  31663  cycpmfvlem  31664  cycpmfv3  31667  cycpmcl  31668  tocyc01  31670  cycpm2tr  31671  cycpmconjv  31694  cycpmrn  31695
  Copyright terms: Public domain W3C validator