Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfv Structured version   Visualization version   GIF version

Theorem tocycfv 30811
 Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfv (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))

Proof of Theorem tocycfv
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocycfv.d . . 3 (𝜑𝐷𝑉)
2 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
32tocycval 30810 . . 3 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
41, 3syl 17 . 2 (𝜑𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
5 simpr 488 . . . . . 6 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
65rneqd 5773 . . . . 5 ((𝜑𝑤 = 𝑊) → ran 𝑤 = ran 𝑊)
76difeq2d 4050 . . . 4 ((𝜑𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊))
87reseq2d 5819 . . 3 ((𝜑𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
95oveq1d 7151 . . . 4 ((𝜑𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1))
105cnveqd 5711 . . . 4 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
119, 10coeq12d 5700 . . 3 ((𝜑𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ 𝑤) = ((𝑊 cyclShift 1) ∘ 𝑊))
128, 11uneq12d 4091 . 2 ((𝜑𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
13 id 22 . . . 4 (𝑢 = 𝑊𝑢 = 𝑊)
14 dmeq 5737 . . . 4 (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊)
15 eqidd 2799 . . . 4 (𝑢 = 𝑊𝐷 = 𝐷)
1613, 14, 15f1eq123d 6584 . . 3 (𝑢 = 𝑊 → (𝑢:dom 𝑢1-1𝐷𝑊:dom 𝑊1-1𝐷))
17 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
18 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
1916, 17, 18elrabd 3630 . 2 (𝜑𝑊 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
20 difexg 5196 . . . . 5 (𝐷𝑉 → (𝐷 ∖ ran 𝑊) ∈ V)
211, 20syl 17 . . . 4 (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V)
2221resiexd 6957 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V)
23 cshwcl 14154 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷)
2417, 23syl 17 . . . 4 (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷)
25 cnvexg 7614 . . . . 5 (𝑊 ∈ Word 𝐷𝑊 ∈ V)
2617, 25syl 17 . . . 4 (𝜑𝑊 ∈ V)
27 coexg 7619 . . . 4 (((𝑊 cyclShift 1) ∈ Word 𝐷𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
2824, 26, 27syl2anc 587 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
29 unexg 7455 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
3022, 28, 29syl2anc 587 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
314, 12, 19, 30fvmptd 6753 1 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ↦ cmpt 5111   I cid 5425  ◡ccnv 5519  dom cdm 5520  ran crn 5521   ↾ cres 5522   ∘ ccom 5524  –1-1→wf1 6322  ‘cfv 6325  (class class class)co 7136  1c1 10530  Word cword 13860   cyclShift ccsh 14144  toCycctocyc 30808 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-hash 13690  df-word 13861  df-concat 13917  df-substr 13997  df-pfx 14027  df-csh 14145  df-tocyc 30809 This theorem is referenced by:  tocycfvres1  30812  tocycfvres2  30813  cycpmfvlem  30814  cycpmfv3  30817  cycpmcl  30818  tocyc01  30820  cycpm2tr  30821  cycpmconjv  30844  cycpmrn  30845
 Copyright terms: Public domain W3C validator