Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycfv Structured version   Visualization version   GIF version

Theorem tocycfv 33129
Description: Function value of a permutation cycle built from a word. (Contributed by Thierry Arnoux, 18-Sep-2023.)
Hypotheses
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
tocycfv.d (𝜑𝐷𝑉)
tocycfv.w (𝜑𝑊 ∈ Word 𝐷)
tocycfv.1 (𝜑𝑊:dom 𝑊1-1𝐷)
Assertion
Ref Expression
tocycfv (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))

Proof of Theorem tocycfv
Dummy variables 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tocycfv.d . . 3 (𝜑𝐷𝑉)
2 tocycval.1 . . . 4 𝐶 = (toCyc‘𝐷)
32tocycval 33128 . . 3 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
41, 3syl 17 . 2 (𝜑𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
5 simpr 484 . . . . . 6 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
65rneqd 5949 . . . . 5 ((𝜑𝑤 = 𝑊) → ran 𝑤 = ran 𝑊)
76difeq2d 4126 . . . 4 ((𝜑𝑤 = 𝑊) → (𝐷 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑊))
87reseq2d 5997 . . 3 ((𝜑𝑤 = 𝑊) → ( I ↾ (𝐷 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑊)))
95oveq1d 7446 . . . 4 ((𝜑𝑤 = 𝑊) → (𝑤 cyclShift 1) = (𝑊 cyclShift 1))
105cnveqd 5886 . . . 4 ((𝜑𝑤 = 𝑊) → 𝑤 = 𝑊)
119, 10coeq12d 5875 . . 3 ((𝜑𝑤 = 𝑊) → ((𝑤 cyclShift 1) ∘ 𝑤) = ((𝑊 cyclShift 1) ∘ 𝑊))
128, 11uneq12d 4169 . 2 ((𝜑𝑤 = 𝑊) → (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
13 id 22 . . . 4 (𝑢 = 𝑊𝑢 = 𝑊)
14 dmeq 5914 . . . 4 (𝑢 = 𝑊 → dom 𝑢 = dom 𝑊)
15 eqidd 2738 . . . 4 (𝑢 = 𝑊𝐷 = 𝐷)
1613, 14, 15f1eq123d 6840 . . 3 (𝑢 = 𝑊 → (𝑢:dom 𝑢1-1𝐷𝑊:dom 𝑊1-1𝐷))
17 tocycfv.w . . 3 (𝜑𝑊 ∈ Word 𝐷)
18 tocycfv.1 . . 3 (𝜑𝑊:dom 𝑊1-1𝐷)
1916, 17, 18elrabd 3694 . 2 (𝜑𝑊 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
201difexd 5331 . . . 4 (𝜑 → (𝐷 ∖ ran 𝑊) ∈ V)
2120resiexd 7236 . . 3 (𝜑 → ( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V)
22 cshwcl 14836 . . . . 5 (𝑊 ∈ Word 𝐷 → (𝑊 cyclShift 1) ∈ Word 𝐷)
2317, 22syl 17 . . . 4 (𝜑 → (𝑊 cyclShift 1) ∈ Word 𝐷)
24 cnvexg 7946 . . . . 5 (𝑊 ∈ Word 𝐷𝑊 ∈ V)
2517, 24syl 17 . . . 4 (𝜑𝑊 ∈ V)
26 coexg 7951 . . . 4 (((𝑊 cyclShift 1) ∈ Word 𝐷𝑊 ∈ V) → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
2723, 25, 26syl2anc 584 . . 3 (𝜑 → ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V)
28 unexg 7763 . . 3 ((( I ↾ (𝐷 ∖ ran 𝑊)) ∈ V ∧ ((𝑊 cyclShift 1) ∘ 𝑊) ∈ V) → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
2921, 27, 28syl2anc 584 . 2 (𝜑 → (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)) ∈ V)
304, 12, 19, 29fvmptd 7023 1 (𝜑 → (𝐶𝑊) = (( I ↾ (𝐷 ∖ ran 𝑊)) ∪ ((𝑊 cyclShift 1) ∘ 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cmpt 5225   I cid 5577  ccnv 5684  dom cdm 5685  ran crn 5686  cres 5687  ccom 5689  1-1wf1 6558  cfv 6561  (class class class)co 7431  1c1 11156  Word cword 14552   cyclShift ccsh 14826  toCycctocyc 33126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-substr 14679  df-pfx 14709  df-csh 14827  df-tocyc 33127
This theorem is referenced by:  tocycfvres1  33130  tocycfvres2  33131  cycpmfvlem  33132  cycpmfv3  33135  cycpmcl  33136  tocyc01  33138  cycpm2tr  33139  cycpmconjv  33162  cycpmrn  33163
  Copyright terms: Public domain W3C validator