Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvcllem4 Structured version   Visualization version   GIF version

Theorem selvcllem4 42554
Description: The fourth argument passed to evalSub is in the domain (a polynomial in (𝐼 mPoly (𝐽 mPoly ((𝐼𝐽) mPoly 𝑅)))). (Contributed by SN, 5-Nov-2023.)
Hypotheses
Ref Expression
selvcllem4.p 𝑃 = (𝐼 mPoly 𝑅)
selvcllem4.b 𝐵 = (Base‘𝑃)
selvcllem4.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvcllem4.t 𝑇 = (𝐽 mPoly 𝑈)
selvcllem4.c 𝐶 = (algSc‘𝑇)
selvcllem4.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvcllem4.s 𝑆 = (𝑇s ran 𝐷)
selvcllem4.w 𝑊 = (𝐼 mPoly 𝑆)
selvcllem4.x 𝑋 = (Base‘𝑊)
selvcllem4.r (𝜑𝑅 ∈ CRing)
selvcllem4.j (𝜑𝐽𝐼)
selvcllem4.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvcllem4 (𝜑 → (𝐷𝐹) ∈ 𝑋)

Proof of Theorem selvcllem4
StepHypRef Expression
1 selvcllem4.p . 2 𝑃 = (𝐼 mPoly 𝑅)
2 selvcllem4.w . 2 𝑊 = (𝐼 mPoly 𝑆)
3 selvcllem4.b . 2 𝐵 = (Base‘𝑃)
4 selvcllem4.x . 2 𝑋 = (Base‘𝑊)
5 selvcllem4.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
6 selvcllem4.t . . . . 5 𝑇 = (𝐽 mPoly 𝑈)
7 selvcllem4.c . . . . 5 𝐶 = (algSc‘𝑇)
8 selvcllem4.d . . . . 5 𝐷 = (𝐶 ∘ (algSc‘𝑈))
9 selvcllem4.f . . . . . . 7 (𝜑𝐹𝐵)
101, 3mplrcl 21919 . . . . . . 7 (𝐹𝐵𝐼 ∈ V)
119, 10syl 17 . . . . . 6 (𝜑𝐼 ∈ V)
1211difexd 5273 . . . . 5 (𝜑 → (𝐼𝐽) ∈ V)
13 selvcllem4.j . . . . . 6 (𝜑𝐽𝐼)
1411, 13ssexd 5266 . . . . 5 (𝜑𝐽 ∈ V)
15 selvcllem4.r . . . . 5 (𝜑𝑅 ∈ CRing)
165, 6, 7, 8, 12, 14, 15selvcllem2 42551 . . . 4 (𝜑𝐷 ∈ (𝑅 RingHom 𝑇))
175, 6, 7, 8, 12, 14, 15selvcllem3 42552 . . . . 5 (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇))
18 ssidd 3961 . . . . 5 (𝜑 → ran 𝐷 ⊆ ran 𝐷)
19 selvcllem4.s . . . . . 6 𝑆 = (𝑇s ran 𝐷)
2019resrhm2b 20505 . . . . 5 ((ran 𝐷 ∈ (SubRing‘𝑇) ∧ ran 𝐷 ⊆ ran 𝐷) → (𝐷 ∈ (𝑅 RingHom 𝑇) ↔ 𝐷 ∈ (𝑅 RingHom 𝑆)))
2117, 18, 20syl2anc 584 . . . 4 (𝜑 → (𝐷 ∈ (𝑅 RingHom 𝑇) ↔ 𝐷 ∈ (𝑅 RingHom 𝑆)))
2216, 21mpbid 232 . . 3 (𝜑𝐷 ∈ (𝑅 RingHom 𝑆))
23 rhmghm 20387 . . 3 (𝐷 ∈ (𝑅 RingHom 𝑆) → 𝐷 ∈ (𝑅 GrpHom 𝑆))
24 ghmmhm 19123 . . 3 (𝐷 ∈ (𝑅 GrpHom 𝑆) → 𝐷 ∈ (𝑅 MndHom 𝑆))
2522, 23, 243syl 18 . 2 (𝜑𝐷 ∈ (𝑅 MndHom 𝑆))
261, 2, 3, 4, 25, 9mhmcompl 22283 1 (𝜑 → (𝐷𝐹) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3438  cdif 3902  wss 3905  ran crn 5624  ccom 5627  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159   MndHom cmhm 18673   GrpHom cghm 19109  CRingccrg 20137   RingHom crh 20372  SubRingcsubrg 20472  algSccascl 21777   mPoly cmpl 21831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-assa 21778  df-ascl 21780  df-psr 21834  df-mpl 21836
This theorem is referenced by:  selvcl  42556  selvval2  42557
  Copyright terms: Public domain W3C validator