Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvval2 Structured version   Visualization version   GIF version

Theorem selvval2 41817
Description: Value of the "variable selection" function. Convert selvval 22060 into a simpler form by using evlsevl 41804. (Contributed by SN, 9-Feb-2025.)
Hypotheses
Ref Expression
selvval2.p 𝑃 = (𝐼 mPoly 𝑅)
selvval2.b 𝐵 = (Base‘𝑃)
selvval2.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvval2.t 𝑇 = (𝐽 mPoly 𝑈)
selvval2.c 𝐶 = (algSc‘𝑇)
selvval2.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvval2.i (𝜑𝐼𝑉)
selvval2.r (𝜑𝑅 ∈ CRing)
selvval2.j (𝜑𝐽𝐼)
selvval2.f (𝜑𝐹𝐵)
Assertion
Ref Expression
selvval2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝐽   𝑥,𝑈   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑃(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem selvval2
StepHypRef Expression
1 selvval2.p . . 3 𝑃 = (𝐼 mPoly 𝑅)
2 selvval2.b . . 3 𝐵 = (Base‘𝑃)
3 selvval2.u . . 3 𝑈 = ((𝐼𝐽) mPoly 𝑅)
4 selvval2.t . . 3 𝑇 = (𝐽 mPoly 𝑈)
5 selvval2.c . . 3 𝐶 = (algSc‘𝑇)
6 selvval2.d . . 3 𝐷 = (𝐶 ∘ (algSc‘𝑈))
7 selvval2.i . . 3 (𝜑𝐼𝑉)
8 selvval2.r . . 3 (𝜑𝑅 ∈ CRing)
9 selvval2.j . . 3 (𝜑𝐽𝐼)
10 selvval2.f . . 3 (𝜑𝐹𝐵)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10selvval 22060 . 2 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
12 eqid 2728 . . . 4 ((𝐼 evalSub 𝑇)‘ran 𝐷) = ((𝐼 evalSub 𝑇)‘ran 𝐷)
13 eqid 2728 . . . 4 (𝐼 eval 𝑇) = (𝐼 eval 𝑇)
14 eqid 2728 . . . 4 (𝐼 mPoly (𝑇s ran 𝐷)) = (𝐼 mPoly (𝑇s ran 𝐷))
15 eqid 2728 . . . 4 (𝑇s ran 𝐷) = (𝑇s ran 𝐷)
16 eqid 2728 . . . 4 (Base‘(𝐼 mPoly (𝑇s ran 𝐷))) = (Base‘(𝐼 mPoly (𝑇s ran 𝐷)))
177, 9ssexd 5324 . . . . 5 (𝜑𝐽 ∈ V)
187difexd 5331 . . . . . 6 (𝜑 → (𝐼𝐽) ∈ V)
193, 18, 8mplcrngd 41779 . . . . 5 (𝜑𝑈 ∈ CRing)
204, 17, 19mplcrngd 41779 . . . 4 (𝜑𝑇 ∈ CRing)
213, 4, 5, 6, 18, 17, 8selvcllem3 41812 . . . 4 (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇))
221, 2, 3, 4, 5, 6, 15, 14, 16, 7, 8, 9, 10selvcllem4 41814 . . . 4 (𝜑 → (𝐷𝐹) ∈ (Base‘(𝐼 mPoly (𝑇s ran 𝐷))))
2312, 13, 14, 15, 16, 7, 20, 21, 22evlsevl 41804 . . 3 (𝜑 → (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹)) = ((𝐼 eval 𝑇)‘(𝐷𝐹)))
2423fveq1d 6899 . 2 (𝜑 → ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
2511, 24eqtrd 2768 1 (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(𝐷𝐹))‘(𝑥𝐼 ↦ if(𝑥𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼𝐽) mVar 𝑅)‘𝑥))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  Vcvv 3471  cdif 3944  wss 3947  ifcif 4529  cmpt 5231  ran crn 5679  ccom 5682  cfv 6548  (class class class)co 7420  Basecbs 17179  s cress 17208  CRingccrg 20173  algSccascl 21785   mVar cmvr 21837   mPoly cmpl 21838   evalSub ces 22015   eval cevl 22016   selectVars cslv 22053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-ofr 7686  df-om 7871  df-1st 7993  df-2nd 7994  df-supp 8166  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9386  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-fzo 13660  df-seq 13999  df-hash 14322  df-struct 17115  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-0g 17422  df-gsum 17423  df-prds 17428  df-pws 17430  df-mre 17565  df-mrc 17566  df-acs 17568  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-mhm 18739  df-submnd 18740  df-grp 18892  df-minusg 18893  df-sbg 18894  df-mulg 19023  df-subg 19077  df-ghm 19167  df-cntz 19267  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-srg 20126  df-ring 20174  df-cring 20175  df-rhm 20410  df-subrng 20482  df-subrg 20507  df-lmod 20744  df-lss 20815  df-lsp 20855  df-assa 21786  df-asp 21787  df-ascl 21788  df-psr 21841  df-mvr 21842  df-mpl 21843  df-evls 22017  df-evl 22018  df-selv 22057
This theorem is referenced by:  selvvvval  41818  selvadd  41821  selvmul  41822
  Copyright terms: Public domain W3C validator