![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvval2 | Structured version Visualization version GIF version |
Description: Value of the "variable selection" function. Convert selvval 22060 into a simpler form by using evlsevl 41804. (Contributed by SN, 9-Feb-2025.) |
Ref | Expression |
---|---|
selvval2.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
selvval2.b | ⊢ 𝐵 = (Base‘𝑃) |
selvval2.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvval2.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvval2.c | ⊢ 𝐶 = (algSc‘𝑇) |
selvval2.d | ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) |
selvval2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvval2.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvval2.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
selvval2.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
selvval2 | ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvval2.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | selvval2.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | selvval2.u | . . 3 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
4 | selvval2.t | . . 3 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
5 | selvval2.c | . . 3 ⊢ 𝐶 = (algSc‘𝑇) | |
6 | selvval2.d | . . 3 ⊢ 𝐷 = (𝐶 ∘ (algSc‘𝑈)) | |
7 | selvval2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | selvval2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
9 | selvval2.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
10 | selvval2.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | selvval 22060 | . 2 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
12 | eqid 2728 | . . . 4 ⊢ ((𝐼 evalSub 𝑇)‘ran 𝐷) = ((𝐼 evalSub 𝑇)‘ran 𝐷) | |
13 | eqid 2728 | . . . 4 ⊢ (𝐼 eval 𝑇) = (𝐼 eval 𝑇) | |
14 | eqid 2728 | . . . 4 ⊢ (𝐼 mPoly (𝑇 ↾s ran 𝐷)) = (𝐼 mPoly (𝑇 ↾s ran 𝐷)) | |
15 | eqid 2728 | . . . 4 ⊢ (𝑇 ↾s ran 𝐷) = (𝑇 ↾s ran 𝐷) | |
16 | eqid 2728 | . . . 4 ⊢ (Base‘(𝐼 mPoly (𝑇 ↾s ran 𝐷))) = (Base‘(𝐼 mPoly (𝑇 ↾s ran 𝐷))) | |
17 | 7, 9 | ssexd 5324 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
18 | 7 | difexd 5331 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
19 | 3, 18, 8 | mplcrngd 41779 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CRing) |
20 | 4, 17, 19 | mplcrngd 41779 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ CRing) |
21 | 3, 4, 5, 6, 18, 17, 8 | selvcllem3 41812 | . . . 4 ⊢ (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇)) |
22 | 1, 2, 3, 4, 5, 6, 15, 14, 16, 7, 8, 9, 10 | selvcllem4 41814 | . . . 4 ⊢ (𝜑 → (𝐷 ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝑇 ↾s ran 𝐷)))) |
23 | 12, 13, 14, 15, 16, 7, 20, 21, 22 | evlsevl 41804 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹)) = ((𝐼 eval 𝑇)‘(𝐷 ∘ 𝐹))) |
24 | 23 | fveq1d 6899 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑇)‘ran 𝐷)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) = (((𝐼 eval 𝑇)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
25 | 11, 24 | eqtrd 2768 | 1 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = (((𝐼 eval 𝑇)‘(𝐷 ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), (𝐶‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3471 ∖ cdif 3944 ⊆ wss 3947 ifcif 4529 ↦ cmpt 5231 ran crn 5679 ∘ ccom 5682 ‘cfv 6548 (class class class)co 7420 Basecbs 17179 ↾s cress 17208 CRingccrg 20173 algSccascl 21785 mVar cmvr 21837 mPoly cmpl 21838 evalSub ces 22015 eval cevl 22016 selectVars cslv 22053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-ofr 7686 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-fsupp 9386 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-fzo 13660 df-seq 13999 df-hash 14322 df-struct 17115 df-sets 17132 df-slot 17150 df-ndx 17162 df-base 17180 df-ress 17209 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-0g 17422 df-gsum 17423 df-prds 17428 df-pws 17430 df-mre 17565 df-mrc 17566 df-acs 17568 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-mhm 18739 df-submnd 18740 df-grp 18892 df-minusg 18893 df-sbg 18894 df-mulg 19023 df-subg 19077 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 df-mgp 20074 df-rng 20092 df-ur 20121 df-srg 20126 df-ring 20174 df-cring 20175 df-rhm 20410 df-subrng 20482 df-subrg 20507 df-lmod 20744 df-lss 20815 df-lsp 20855 df-assa 21786 df-asp 21787 df-ascl 21788 df-psr 21841 df-mvr 21842 df-mpl 21843 df-evls 22017 df-evl 22018 df-selv 22057 |
This theorem is referenced by: selvvvval 41818 selvadd 41821 selvmul 41822 |
Copyright terms: Public domain | W3C validator |