Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  selvcllemh Structured version   Visualization version   GIF version

Theorem selvcllemh 42698
Description: Apply the third argument (selvcllem3 42697) to show that 𝑄 is a (ring) homomorphism. (Contributed by SN, 5-Nov-2023.)
Hypotheses
Ref Expression
selvcllemh.u 𝑈 = ((𝐼𝐽) mPoly 𝑅)
selvcllemh.t 𝑇 = (𝐽 mPoly 𝑈)
selvcllemh.c 𝐶 = (algSc‘𝑇)
selvcllemh.d 𝐷 = (𝐶 ∘ (algSc‘𝑈))
selvcllemh.q 𝑄 = ((𝐼 evalSub 𝑇)‘ran 𝐷)
selvcllemh.w 𝑊 = (𝐼 mPoly 𝑆)
selvcllemh.s 𝑆 = (𝑇s ran 𝐷)
selvcllemh.x 𝑋 = (𝑇s (𝐵m 𝐼))
selvcllemh.b 𝐵 = (Base‘𝑇)
selvcllemh.i (𝜑𝐼𝑉)
selvcllemh.r (𝜑𝑅 ∈ CRing)
selvcllemh.j (𝜑𝐽𝐼)
Assertion
Ref Expression
selvcllemh (𝜑𝑄 ∈ (𝑊 RingHom 𝑋))

Proof of Theorem selvcllemh
StepHypRef Expression
1 selvcllemh.i . 2 (𝜑𝐼𝑉)
2 selvcllemh.j . . . 4 (𝜑𝐽𝐼)
31, 2ssexd 5264 . . 3 (𝜑𝐽 ∈ V)
41difexd 5271 . . . 4 (𝜑 → (𝐼𝐽) ∈ V)
5 selvcllemh.r . . . 4 (𝜑𝑅 ∈ CRing)
6 selvcllemh.u . . . . 5 𝑈 = ((𝐼𝐽) mPoly 𝑅)
76mplcrng 21959 . . . 4 (((𝐼𝐽) ∈ V ∧ 𝑅 ∈ CRing) → 𝑈 ∈ CRing)
84, 5, 7syl2anc 584 . . 3 (𝜑𝑈 ∈ CRing)
9 selvcllemh.t . . . 4 𝑇 = (𝐽 mPoly 𝑈)
109mplcrng 21959 . . 3 ((𝐽 ∈ V ∧ 𝑈 ∈ CRing) → 𝑇 ∈ CRing)
113, 8, 10syl2anc 584 . 2 (𝜑𝑇 ∈ CRing)
12 selvcllemh.c . . 3 𝐶 = (algSc‘𝑇)
13 selvcllemh.d . . 3 𝐷 = (𝐶 ∘ (algSc‘𝑈))
146, 9, 12, 13, 4, 3, 5selvcllem3 42697 . 2 (𝜑 → ran 𝐷 ∈ (SubRing‘𝑇))
15 selvcllemh.q . . 3 𝑄 = ((𝐼 evalSub 𝑇)‘ran 𝐷)
16 selvcllemh.w . . 3 𝑊 = (𝐼 mPoly 𝑆)
17 selvcllemh.s . . 3 𝑆 = (𝑇s ran 𝐷)
18 selvcllemh.x . . 3 𝑋 = (𝑇s (𝐵m 𝐼))
19 selvcllemh.b . . 3 𝐵 = (Base‘𝑇)
2015, 16, 17, 18, 19evlsrhm 22024 . 2 ((𝐼𝑉𝑇 ∈ CRing ∧ ran 𝐷 ∈ (SubRing‘𝑇)) → 𝑄 ∈ (𝑊 RingHom 𝑋))
211, 11, 14, 20syl3anc 1373 1 (𝜑𝑄 ∈ (𝑊 RingHom 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  wss 3898  ran crn 5620  ccom 5623  cfv 6486  (class class class)co 7352  m cmap 8756  Basecbs 17122  s cress 17143  s cpws 17352  CRingccrg 20154   RingHom crh 20389  SubRingcsubrg 20486  algSccascl 21791   mPoly cmpl 21845   evalSub ces 22008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-srg 20107  df-ring 20155  df-cring 20156  df-rhm 20392  df-subrng 20463  df-subrg 20487  df-lmod 20797  df-lss 20867  df-lsp 20907  df-assa 21792  df-asp 21793  df-ascl 21794  df-psr 21848  df-mvr 21849  df-mpl 21850  df-evls 22010
This theorem is referenced by:  selvcl  42701
  Copyright terms: Public domain W3C validator