Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ss Structured version   Visualization version   GIF version

Theorem sge0ss 43840
Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ss.kph 𝑘𝜑
sge0ss.b (𝜑𝐵𝑉)
sge0ss.a (𝜑𝐴𝐵)
sge0ss.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
sge0ss.c0 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
sge0ss (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0ss
StepHypRef Expression
1 sge0ss.kph . . . 4 𝑘𝜑
2 sge0ss.a . . . . 5 (𝜑𝐴𝐵)
3 sge0ss.b . . . . 5 (𝜑𝐵𝑉)
4 ssexg 5242 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
52, 3, 4syl2anc 583 . . . 4 (𝜑𝐴 ∈ V)
63difexd 5248 . . . 4 (𝜑 → (𝐵𝐴) ∈ V)
7 disjdif 4402 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
87a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
9 sge0ss.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
10 sge0ss.c0 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
11 0e0iccpnf 13120 . . . . . 6 0 ∈ (0[,]+∞)
1211a1i 11 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 0 ∈ (0[,]+∞))
1310, 12eqeltrd 2839 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
141, 5, 6, 8, 9, 13sge0splitmpt 43839 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
1514eqcomd 2744 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
161, 10mpteq2da 5168 . . . . . 6 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵𝐴) ↦ 0))
1716fveq2d 6760 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)))
181, 6sge0z 43803 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)) = 0)
1917, 18eqtrd 2778 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = 0)
2019oveq2d 7271 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0))
21 eqid 2738 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
221, 9, 21fmptdf 6973 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
235, 22sge0xrcl 43813 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
24 xaddid1 12904 . . . 4 ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
2523, 24syl 17 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
26 eqidd 2739 . . 3 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐴𝐶)))
2720, 25, 263eqtrrd 2783 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
28 undif 4412 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
292, 28sylib 217 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3029eqcomd 2744 . . . 4 (𝜑𝐵 = (𝐴 ∪ (𝐵𝐴)))
3130mpteq1d 5165 . . 3 (𝜑 → (𝑘𝐵𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶))
3231fveq2d 6760 . 2 (𝜑 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
3315, 27, 323eqtr4d 2788 1 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  *cxr 10939   +𝑒 cxad 12775  [,]cicc 13011  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xadd 12778  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  sge0fodjrnlem  43844  meadjiunlem  43893  ovnhoilem1  44029  ovnsubadd2lem  44073
  Copyright terms: Public domain W3C validator