Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ss | Structured version Visualization version GIF version |
Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ss.kph | ⊢ Ⅎ𝑘𝜑 |
sge0ss.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sge0ss.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sge0ss.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0ss.c0 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
Ref | Expression |
---|---|
sge0ss | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ss.kph | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | sge0ss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | sge0ss.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | ssexg 5247 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
6 | 3 | difexd 5253 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ V) |
7 | disjdif 4405 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
9 | sge0ss.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
10 | sge0ss.c0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) | |
11 | 0e0iccpnf 13191 | . . . . . 6 ⊢ 0 ∈ (0[,]+∞) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 0 ∈ (0[,]+∞)) |
13 | 10, 12 | eqeltrd 2839 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ (0[,]+∞)) |
14 | 1, 5, 6, 8, 9, 13 | sge0splitmpt 43949 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
15 | 14 | eqcomd 2744 | . 2 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
16 | 1, 10 | mpteq2da 5172 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
17 | 16 | fveq2d 6778 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0))) |
18 | 1, 6 | sge0z 43913 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) = 0) |
19 | 17, 18 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = 0) |
20 | 19 | oveq2d 7291 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0)) |
21 | eqid 2738 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
22 | 1, 9, 21 | fmptdf 6991 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
23 | 5, 22 | sge0xrcl 43923 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ*) |
24 | xaddid1 12975 | . . . 4 ⊢ ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ* → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) |
26 | eqidd 2739 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
27 | 20, 25, 26 | 3eqtrrd 2783 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
28 | undif 4415 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
29 | 2, 28 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
30 | 29 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
31 | 30 | mpteq1d 5169 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) |
32 | 31 | fveq2d 6778 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
33 | 15, 27, 32 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 +∞cpnf 11006 ℝ*cxr 11008 +𝑒 cxad 12846 [,]cicc 13082 Σ^csumge0 43900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-xadd 12849 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-sumge0 43901 |
This theorem is referenced by: sge0fodjrnlem 43954 meadjiunlem 44003 ovnhoilem1 44139 ovnsubadd2lem 44183 |
Copyright terms: Public domain | W3C validator |