Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ss Structured version   Visualization version   GIF version

Theorem sge0ss 42981
 Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ss.kph 𝑘𝜑
sge0ss.b (𝜑𝐵𝑉)
sge0ss.a (𝜑𝐴𝐵)
sge0ss.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
sge0ss.c0 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
sge0ss (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0ss
StepHypRef Expression
1 sge0ss.kph . . . 4 𝑘𝜑
2 sge0ss.a . . . . 5 (𝜑𝐴𝐵)
3 sge0ss.b . . . . 5 (𝜑𝐵𝑉)
4 ssexg 5213 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
52, 3, 4syl2anc 587 . . . 4 (𝜑𝐴 ∈ V)
6 difexg 5217 . . . . 5 (𝐵𝑉 → (𝐵𝐴) ∈ V)
73, 6syl 17 . . . 4 (𝜑 → (𝐵𝐴) ∈ V)
8 disjdif 4404 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
98a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
10 sge0ss.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
11 sge0ss.c0 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
12 0e0iccpnf 12846 . . . . . 6 0 ∈ (0[,]+∞)
1312a1i 11 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 0 ∈ (0[,]+∞))
1411, 13eqeltrd 2916 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
151, 5, 7, 9, 10, 14sge0splitmpt 42980 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
1615eqcomd 2830 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
171, 11mpteq2da 5146 . . . . . 6 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵𝐴) ↦ 0))
1817fveq2d 6665 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)))
191, 7sge0z 42944 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)) = 0)
2018, 19eqtrd 2859 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = 0)
2120oveq2d 7165 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0))
22 eqid 2824 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
231, 10, 22fmptdf 6872 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
245, 23sge0xrcl 42954 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
25 xaddid1 12631 . . . 4 ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
2624, 25syl 17 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
27 eqidd 2825 . . 3 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐴𝐶)))
2821, 26, 273eqtrrd 2864 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
29 undif 4413 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
302, 29sylib 221 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3130eqcomd 2830 . . . 4 (𝜑𝐵 = (𝐴 ∪ (𝐵𝐴)))
3231mpteq1d 5141 . . 3 (𝜑 → (𝑘𝐵𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶))
3332fveq2d 6665 . 2 (𝜑 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
3416, 28, 333eqtr4d 2869 1 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  Ⅎwnf 1785   ∈ wcel 2115  Vcvv 3480   ∖ cdif 3916   ∪ cun 3917   ∩ cin 3918   ⊆ wss 3919  ∅c0 4276   ↦ cmpt 5132  ‘cfv 6343  (class class class)co 7149  0cc0 10535  +∞cpnf 10670  ℝ*cxr 10672   +𝑒 cxad 12502  [,]cicc 12738  Σ^csumge0 42931 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-xadd 12505  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-sumge0 42932 This theorem is referenced by:  sge0fodjrnlem  42985  meadjiunlem  43034  ovnhoilem1  43170  ovnsubadd2lem  43214
 Copyright terms: Public domain W3C validator