![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ss | Structured version Visualization version GIF version |
Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
sge0ss.kph | ⊢ Ⅎ𝑘𝜑 |
sge0ss.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
sge0ss.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sge0ss.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
sge0ss.c0 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
Ref | Expression |
---|---|
sge0ss | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sge0ss.kph | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
2 | sge0ss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | sge0ss.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | ssexg 5316 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
5 | 2, 3, 4 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
6 | 3 | difexd 5322 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ V) |
7 | disjdif 4466 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
9 | sge0ss.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
10 | sge0ss.c0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) | |
11 | 0e0iccpnf 13439 | . . . . . 6 ⊢ 0 ∈ (0[,]+∞) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 0 ∈ (0[,]+∞)) |
13 | 10, 12 | eqeltrd 2827 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ (0[,]+∞)) |
14 | 1, 5, 6, 8, 9, 13 | sge0splitmpt 45680 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
15 | 14 | eqcomd 2732 | . 2 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
16 | 1, 10 | mpteq2da 5239 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
17 | 16 | fveq2d 6888 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0))) |
18 | 1, 6 | sge0z 45644 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) = 0) |
19 | 17, 18 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = 0) |
20 | 19 | oveq2d 7420 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0)) |
21 | eqid 2726 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
22 | 1, 9, 21 | fmptdf 7111 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
23 | 5, 22 | sge0xrcl 45654 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ*) |
24 | xaddrid 13223 | . . . 4 ⊢ ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ* → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) |
26 | eqidd 2727 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
27 | 20, 25, 26 | 3eqtrrd 2771 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
28 | undif 4476 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
29 | 2, 28 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
30 | 29 | eqcomd 2732 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
31 | 30 | mpteq1d 5236 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) |
32 | 31 | fveq2d 6888 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
33 | 15, 27, 32 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Vcvv 3468 ∖ cdif 3940 ∪ cun 3941 ∩ cin 3942 ⊆ wss 3943 ∅c0 4317 ↦ cmpt 5224 ‘cfv 6536 (class class class)co 7404 0cc0 11109 +∞cpnf 11246 ℝ*cxr 11248 +𝑒 cxad 13093 [,]cicc 13330 Σ^csumge0 45631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-oi 9504 df-card 9933 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-n0 12474 df-z 12560 df-uz 12824 df-rp 12978 df-xadd 13096 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-sum 15637 df-sumge0 45632 |
This theorem is referenced by: sge0fodjrnlem 45685 meadjiunlem 45734 ovnhoilem1 45870 ovnsubadd2lem 45914 |
Copyright terms: Public domain | W3C validator |