| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ss | Structured version Visualization version GIF version | ||
| Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0ss.kph | ⊢ Ⅎ𝑘𝜑 |
| sge0ss.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| sge0ss.a | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sge0ss.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) |
| sge0ss.c0 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) |
| Ref | Expression |
|---|---|
| sge0ss | ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0ss.kph | . . . 4 ⊢ Ⅎ𝑘𝜑 | |
| 2 | sge0ss.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 3 | sge0ss.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | ssexg 5265 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 6 | 3 | difexd 5273 | . . . 4 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ V) |
| 7 | disjdif 4421 | . . . . 5 ⊢ (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅ | |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ (𝐵 ∖ 𝐴)) = ∅) |
| 9 | sge0ss.c | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) | |
| 10 | sge0ss.c0 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 = 0) | |
| 11 | 0e0iccpnf 13363 | . . . . . 6 ⊢ 0 ∈ (0[,]+∞) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 0 ∈ (0[,]+∞)) |
| 13 | 10, 12 | eqeltrd 2833 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐵 ∖ 𝐴)) → 𝐶 ∈ (0[,]+∞)) |
| 14 | 1, 5, 6, 8, 9, 13 | sge0splitmpt 46536 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
| 15 | 14 | eqcomd 2739 | . 2 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
| 16 | 1, 10 | mpteq2da 5187 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) |
| 17 | 16 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0))) |
| 18 | 1, 6 | sge0z 46500 | . . . . 5 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 0)) = 0) |
| 19 | 17, 18 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)) = 0) |
| 20 | 19 | oveq2d 7370 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0)) |
| 21 | eqid 2733 | . . . . . 6 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐶) = (𝑘 ∈ 𝐴 ↦ 𝐶) | |
| 22 | 1, 9, 21 | fmptdf 7058 | . . . . 5 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐶):𝐴⟶(0[,]+∞)) |
| 23 | 5, 22 | sge0xrcl 46510 | . . . 4 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ*) |
| 24 | xaddrid 13144 | . . . 4 ⊢ ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ* → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
| 25 | 23, 24 | syl 17 | . . 3 ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 0) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) |
| 26 | eqidd 2734 | . . 3 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) | |
| 27 | 20, 25, 26 | 3eqtrrd 2773 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 (Σ^‘(𝑘 ∈ (𝐵 ∖ 𝐴) ↦ 𝐶)))) |
| 28 | undif 4431 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 29 | 2, 28 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 30 | 29 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → 𝐵 = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
| 31 | 30 | mpteq1d 5185 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐵 ↦ 𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶)) |
| 32 | 31 | fveq2d 6834 | . 2 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵 ∖ 𝐴)) ↦ 𝐶))) |
| 33 | 15, 27, 32 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) = (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 0cc0 11015 +∞cpnf 11152 ℝ*cxr 11154 +𝑒 cxad 13013 [,]cicc 13252 Σ^csumge0 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-xadd 13016 df-ico 13255 df-icc 13256 df-fz 13412 df-fzo 13559 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-sumge0 46488 |
| This theorem is referenced by: sge0fodjrnlem 46541 meadjiunlem 46590 ovnhoilem1 46726 ovnsubadd2lem 46770 |
| Copyright terms: Public domain | W3C validator |