Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ss Structured version   Visualization version   GIF version

Theorem sge0ss 46377
Description: Change the index set to a subset in a sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0ss.kph 𝑘𝜑
sge0ss.b (𝜑𝐵𝑉)
sge0ss.a (𝜑𝐴𝐵)
sge0ss.c ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
sge0ss.c0 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
Assertion
Ref Expression
sge0ss (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝑉(𝑘)

Proof of Theorem sge0ss
StepHypRef Expression
1 sge0ss.kph . . . 4 𝑘𝜑
2 sge0ss.a . . . . 5 (𝜑𝐴𝐵)
3 sge0ss.b . . . . 5 (𝜑𝐵𝑉)
4 ssexg 5291 . . . . 5 ((𝐴𝐵𝐵𝑉) → 𝐴 ∈ V)
52, 3, 4syl2anc 584 . . . 4 (𝜑𝐴 ∈ V)
63difexd 5299 . . . 4 (𝜑 → (𝐵𝐴) ∈ V)
7 disjdif 4445 . . . . 5 (𝐴 ∩ (𝐵𝐴)) = ∅
87a1i 11 . . . 4 (𝜑 → (𝐴 ∩ (𝐵𝐴)) = ∅)
9 sge0ss.c . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (0[,]+∞))
10 sge0ss.c0 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)
11 0e0iccpnf 13466 . . . . . 6 0 ∈ (0[,]+∞)
1211a1i 11 . . . . 5 ((𝜑𝑘 ∈ (𝐵𝐴)) → 0 ∈ (0[,]+∞))
1310, 12eqeltrd 2833 . . . 4 ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 ∈ (0[,]+∞))
141, 5, 6, 8, 9, 13sge0splitmpt 46376 . . 3 (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
1514eqcomd 2740 . 2 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
161, 10mpteq2da 5211 . . . . . 6 (𝜑 → (𝑘 ∈ (𝐵𝐴) ↦ 𝐶) = (𝑘 ∈ (𝐵𝐴) ↦ 0))
1716fveq2d 6877 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)))
181, 6sge0z 46340 . . . . 5 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 0)) = 0)
1917, 18eqtrd 2769 . . . 4 (𝜑 → (Σ^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶)) = 0)
2019oveq2d 7416 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0))
21 eqid 2734 . . . . . 6 (𝑘𝐴𝐶) = (𝑘𝐴𝐶)
221, 9, 21fmptdf 7104 . . . . 5 (𝜑 → (𝑘𝐴𝐶):𝐴⟶(0[,]+∞))
235, 22sge0xrcl 46350 . . . 4 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) ∈ ℝ*)
24 xaddrid 13250 . . . 4 ((Σ^‘(𝑘𝐴𝐶)) ∈ ℝ* → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
2523, 24syl 17 . . 3 (𝜑 → ((Σ^‘(𝑘𝐴𝐶)) +𝑒 0) = (Σ^‘(𝑘𝐴𝐶)))
26 eqidd 2735 . . 3 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐴𝐶)))
2720, 25, 263eqtrrd 2774 . 2 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = ((Σ^‘(𝑘𝐴𝐶)) +𝑒^‘(𝑘 ∈ (𝐵𝐴) ↦ 𝐶))))
28 undif 4455 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
292, 28sylib 218 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
3029eqcomd 2740 . . . 4 (𝜑𝐵 = (𝐴 ∪ (𝐵𝐴)))
3130mpteq1d 5208 . . 3 (𝜑 → (𝑘𝐵𝐶) = (𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶))
3231fveq2d 6877 . 2 (𝜑 → (Σ^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 ∈ (𝐴 ∪ (𝐵𝐴)) ↦ 𝐶)))
3315, 27, 323eqtr4d 2779 1 (𝜑 → (Σ^‘(𝑘𝐴𝐶)) = (Σ^‘(𝑘𝐵𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  Vcvv 3457  cdif 3921  cun 3922  cin 3923  wss 3924  c0 4306  cmpt 5199  cfv 6528  (class class class)co 7400  0cc0 11122  +∞cpnf 11259  *cxr 11261   +𝑒 cxad 13119  [,]cicc 13357  Σ^csumge0 46327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5247  ax-sep 5264  ax-nul 5274  ax-pow 5333  ax-pr 5400  ax-un 7724  ax-inf2 9648  ax-cnex 11178  ax-resscn 11179  ax-1cn 11180  ax-icn 11181  ax-addcl 11182  ax-addrcl 11183  ax-mulcl 11184  ax-mulrcl 11185  ax-mulcom 11186  ax-addass 11187  ax-mulass 11188  ax-distr 11189  ax-i2m1 11190  ax-1ne0 11191  ax-1rid 11192  ax-rnegex 11193  ax-rrecex 11194  ax-cnre 11195  ax-pre-lttri 11196  ax-pre-lttrn 11197  ax-pre-ltadd 11198  ax-pre-mulgt0 11199  ax-pre-sup 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4882  df-int 4921  df-iun 4967  df-br 5118  df-opab 5180  df-mpt 5200  df-tr 5228  df-id 5546  df-eprel 5551  df-po 5559  df-so 5560  df-fr 5604  df-se 5605  df-we 5606  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-rn 5663  df-res 5664  df-ima 5665  df-pred 6288  df-ord 6353  df-on 6354  df-lim 6355  df-suc 6356  df-iota 6481  df-fun 6530  df-fn 6531  df-f 6532  df-f1 6533  df-fo 6534  df-f1o 6535  df-fv 6536  df-isom 6537  df-riota 7357  df-ov 7403  df-oprab 7404  df-mpo 7405  df-om 7857  df-1st 7983  df-2nd 7984  df-frecs 8275  df-wrecs 8306  df-recs 8380  df-rdg 8419  df-1o 8475  df-er 8714  df-en 8955  df-dom 8956  df-sdom 8957  df-fin 8958  df-sup 9449  df-oi 9517  df-card 9946  df-pnf 11264  df-mnf 11265  df-xr 11266  df-ltxr 11267  df-le 11268  df-sub 11461  df-neg 11462  df-div 11888  df-nn 12234  df-2 12296  df-3 12297  df-n0 12495  df-z 12582  df-uz 12846  df-rp 13002  df-xadd 13122  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13662  df-seq 14010  df-exp 14070  df-hash 14339  df-cj 15107  df-re 15108  df-im 15109  df-sqrt 15243  df-abs 15244  df-clim 15493  df-sum 15692  df-sumge0 46328
This theorem is referenced by:  sge0fodjrnlem  46381  meadjiunlem  46430  ovnhoilem1  46566  ovnsubadd2lem  46610
  Copyright terms: Public domain W3C validator