![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcl | Structured version Visualization version GIF version |
Description: Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
selvcl.b | ⊢ 𝐵 = (Base‘𝑃) |
selvcl.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvcl.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvcl.e | ⊢ 𝐸 = (Base‘𝑇) |
selvcl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvcl.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
selvcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
selvcl | ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | selvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | selvcl.u | . . 3 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
4 | selvcl.t | . . 3 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
5 | eqid 2733 | . . 3 ⊢ (algSc‘𝑇) = (algSc‘𝑇) | |
6 | eqid 2733 | . . 3 ⊢ ((algSc‘𝑇) ∘ (algSc‘𝑈)) = ((algSc‘𝑇) ∘ (algSc‘𝑈)) | |
7 | selvcl.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
8 | selvcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | selvval 22138 | . 2 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
10 | eqid 2733 | . . . 4 ⊢ (𝑇 ↑s (𝐸 ↑m 𝐼)) = (𝑇 ↑s (𝐸 ↑m 𝐼)) | |
11 | selvcl.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
12 | eqid 2733 | . . . 4 ⊢ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) = (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) | |
13 | 1, 2 | mplrcl 22013 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
14 | 8, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
15 | 14, 7 | ssexd 5325 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
16 | 14 | difexd 5332 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
17 | selvcl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
18 | 3, 16, 17 | mplcrngd 42488 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CRing) |
19 | 4, 15, 18 | mplcrngd 42488 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ CRing) |
20 | ovexd 7460 | . . . 4 ⊢ (𝜑 → (𝐸 ↑m 𝐼) ∈ V) | |
21 | eqid 2733 | . . . . . . 7 ⊢ ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
22 | eqid 2733 | . . . . . . 7 ⊢ (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) = (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) | |
23 | eqid 2733 | . . . . . . 7 ⊢ (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
24 | 3, 4, 5, 6, 21, 22, 23, 10, 11, 14, 17, 7 | selvcllemh 42521 | . . . . . 6 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼)))) |
25 | eqid 2733 | . . . . . . 7 ⊢ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) = (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) | |
26 | 25, 12 | rhmf 20487 | . . . . . 6 ⊢ (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼))) → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
28 | 1, 2, 3, 4, 5, 6, 23, 22, 25, 17, 7, 8 | selvcllem4 42522 | . . . . 5 ⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))) |
29 | 27, 28 | ffvelcdmd 7099 | . . . 4 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)) ∈ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
30 | 10, 11, 12, 19, 20, 29 | pwselbas 17525 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)):(𝐸 ↑m 𝐼)⟶𝐸) |
31 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
32 | 3, 4, 5, 11, 31, 14, 17, 7 | selvcllem5 42523 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) ∈ (𝐸 ↑m 𝐼)) |
33 | 30, 32 | ffvelcdmd 7099 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ 𝐸) |
34 | 9, 33 | eqeltrd 2837 | 1 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∈ wcel 2104 Vcvv 3477 ∖ cdif 3960 ⊆ wss 3963 ifcif 4530 ↦ cmpt 5232 ran crn 5684 ∘ ccom 5687 ⟶wf 6554 ‘cfv 6558 (class class class)co 7425 ↑m cmap 8859 Basecbs 17234 ↾s cress 17263 ↑s cpws 17482 CRingccrg 20237 RingHom crh 20471 algSccascl 21871 mVar cmvr 21924 mPoly cmpl 21925 evalSub ces 22095 selectVars cslv 22131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-of 7691 df-ofr 7692 df-om 7881 df-1st 8007 df-2nd 8008 df-supp 8179 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-2o 8500 df-er 8738 df-map 8861 df-pm 8862 df-ixp 8931 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-fsupp 9394 df-sup 9473 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12605 df-dec 12725 df-uz 12870 df-fz 13538 df-fzo 13682 df-seq 14029 df-hash 14356 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-sca 17303 df-vsca 17304 df-ip 17305 df-tset 17306 df-ple 17307 df-ds 17309 df-hom 17311 df-cco 17312 df-0g 17477 df-gsum 17478 df-prds 17483 df-pws 17485 df-mre 17620 df-mrc 17621 df-acs 17623 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18794 df-submnd 18795 df-grp 18952 df-minusg 18953 df-sbg 18954 df-mulg 19084 df-subg 19139 df-ghm 19229 df-cntz 19333 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20156 df-ur 20185 df-srg 20190 df-ring 20238 df-cring 20239 df-rhm 20474 df-subrng 20548 df-subrg 20573 df-lmod 20858 df-lss 20929 df-lsp 20969 df-assa 21872 df-asp 21873 df-ascl 21874 df-psr 21928 df-mvr 21929 df-mpl 21930 df-evls 22097 df-selv 22135 |
This theorem is referenced by: evlselv 42528 |
Copyright terms: Public domain | W3C validator |