Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcl | Structured version Visualization version GIF version |
Description: Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.) |
Ref | Expression |
---|---|
selvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
selvcl.b | ⊢ 𝐵 = (Base‘𝑃) |
selvcl.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
selvcl.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
selvcl.e | ⊢ 𝐸 = (Base‘𝑇) |
selvcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
selvcl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
selvcl.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
selvcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
selvcl | ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | selvcl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | selvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | selvcl.u | . . 3 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
4 | selvcl.t | . . 3 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
5 | eqid 2759 | . . 3 ⊢ (algSc‘𝑇) = (algSc‘𝑇) | |
6 | eqid 2759 | . . 3 ⊢ ((algSc‘𝑇) ∘ (algSc‘𝑈)) = ((algSc‘𝑇) ∘ (algSc‘𝑈)) | |
7 | selvcl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
8 | selvcl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
9 | selvcl.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
10 | selvcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | selvval 20896 | . 2 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
12 | eqid 2759 | . . . 4 ⊢ (𝑇 ↑s (𝐸 ↑m 𝐼)) = (𝑇 ↑s (𝐸 ↑m 𝐼)) | |
13 | selvcl.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
14 | eqid 2759 | . . . 4 ⊢ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) = (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) | |
15 | 7, 9 | ssexd 5199 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
16 | difexg 5202 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → (𝐼 ∖ 𝐽) ∈ V) | |
17 | 7, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
18 | 3 | mplcrng 20800 | . . . . . 6 ⊢ (((𝐼 ∖ 𝐽) ∈ V ∧ 𝑅 ∈ CRing) → 𝑈 ∈ CRing) |
19 | 17, 8, 18 | syl2anc 587 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CRing) |
20 | 4 | mplcrng 20800 | . . . . 5 ⊢ ((𝐽 ∈ V ∧ 𝑈 ∈ CRing) → 𝑇 ∈ CRing) |
21 | 15, 19, 20 | syl2anc 587 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ CRing) |
22 | ovexd 7192 | . . . 4 ⊢ (𝜑 → (𝐸 ↑m 𝐼) ∈ V) | |
23 | eqid 2759 | . . . . . . 7 ⊢ ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
24 | eqid 2759 | . . . . . . 7 ⊢ (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) = (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) | |
25 | eqid 2759 | . . . . . . 7 ⊢ (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
26 | 3, 4, 5, 6, 23, 24, 25, 12, 13, 7, 8, 9 | selvval2lemn 39774 | . . . . . 6 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼)))) |
27 | eqid 2759 | . . . . . . 7 ⊢ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) = (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) | |
28 | 27, 14 | rhmf 19564 | . . . . . 6 ⊢ (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼))) → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
29 | 26, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
30 | 1, 2, 3, 4, 5, 6, 25, 24, 27, 7, 8, 9, 10 | selvval2lem4 39775 | . . . . 5 ⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))) |
31 | 29, 30 | ffvelrnd 6850 | . . . 4 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)) ∈ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
32 | 12, 13, 14, 21, 22, 31 | pwselbas 16835 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)):(𝐸 ↑m 𝐼)⟶𝐸) |
33 | eqid 2759 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
34 | 3, 4, 5, 13, 33, 7, 8, 9 | selvval2lem5 39776 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) ∈ (𝐸 ↑m 𝐼)) |
35 | 32, 34 | ffvelrnd 6850 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ 𝐸) |
36 | 11, 35 | eqeltrd 2853 | 1 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ∖ cdif 3858 ⊆ wss 3861 ifcif 4424 ↦ cmpt 5117 ran crn 5530 ∘ ccom 5533 ⟶wf 6337 ‘cfv 6341 (class class class)co 7157 ↑m cmap 8423 Basecbs 16556 ↾s cress 16557 ↑s cpws 16793 CRingccrg 19381 RingHom crh 19550 algSccascl 20632 mVar cmvr 20682 mPoly cmpl 20683 evalSub ces 20848 selectVars cslv 20886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-ofr 7413 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-sup 8953 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-fz 12954 df-fzo 13097 df-seq 13433 df-hash 13755 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-hom 16662 df-cco 16663 df-0g 16788 df-gsum 16789 df-prds 16794 df-pws 16796 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-mhm 18037 df-submnd 18038 df-grp 18187 df-minusg 18188 df-sbg 18189 df-mulg 18307 df-subg 18358 df-ghm 18438 df-cntz 18529 df-cmn 18990 df-abl 18991 df-mgp 19323 df-ur 19335 df-srg 19339 df-ring 19382 df-cring 19383 df-rnghom 19553 df-subrg 19616 df-lmod 19719 df-lss 19787 df-lsp 19827 df-assa 20633 df-asp 20634 df-ascl 20635 df-psr 20686 df-mvr 20687 df-mpl 20688 df-evls 20850 df-selv 20890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |