Step | Hyp | Ref
| Expression |
1 | | selvcl.p |
. . 3
β’ π = (πΌ mPoly π
) |
2 | | selvcl.b |
. . 3
β’ π΅ = (Baseβπ) |
3 | | selvcl.u |
. . 3
β’ π = ((πΌ β π½) mPoly π
) |
4 | | selvcl.t |
. . 3
β’ π = (π½ mPoly π) |
5 | | eqid 2732 |
. . 3
β’
(algScβπ) =
(algScβπ) |
6 | | eqid 2732 |
. . 3
β’
((algScβπ)
β (algScβπ)) =
((algScβπ) β
(algScβπ)) |
7 | | selvcl.i |
. . 3
β’ (π β πΌ β π) |
8 | | selvcl.r |
. . 3
β’ (π β π
β CRing) |
9 | | selvcl.j |
. . 3
β’ (π β π½ β πΌ) |
10 | | selvcl.f |
. . 3
β’ (π β πΉ β π΅) |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | selvval 21672 |
. 2
β’ (π β (((πΌ selectVars π
)βπ½)βπΉ) = ((((πΌ evalSub π)βran ((algScβπ) β (algScβπ)))β(((algScβπ) β (algScβπ)) β πΉ))β(π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), ((algScβπ)β(((πΌ β π½) mVar π
)βπ₯)))))) |
12 | | eqid 2732 |
. . . 4
β’ (π βs
(πΈ βm πΌ)) = (π βs (πΈ βm πΌ)) |
13 | | selvcl.e |
. . . 4
β’ πΈ = (Baseβπ) |
14 | | eqid 2732 |
. . . 4
β’
(Baseβ(π
βs (πΈ βm πΌ))) = (Baseβ(π βs (πΈ βm πΌ))) |
15 | 7, 9 | ssexd 5323 |
. . . . 5
β’ (π β π½ β V) |
16 | 7 | difexd 5328 |
. . . . . 6
β’ (π β (πΌ β π½) β V) |
17 | 3 | mplcrng 21571 |
. . . . . 6
β’ (((πΌ β π½) β V β§ π
β CRing) β π β CRing) |
18 | 16, 8, 17 | syl2anc 584 |
. . . . 5
β’ (π β π β CRing) |
19 | 4 | mplcrng 21571 |
. . . . 5
β’ ((π½ β V β§ π β CRing) β π β CRing) |
20 | 15, 18, 19 | syl2anc 584 |
. . . 4
β’ (π β π β CRing) |
21 | | ovexd 7440 |
. . . 4
β’ (π β (πΈ βm πΌ) β V) |
22 | | eqid 2732 |
. . . . . . 7
β’ ((πΌ evalSub π)βran ((algScβπ) β (algScβπ))) = ((πΌ evalSub π)βran ((algScβπ) β (algScβπ))) |
23 | | eqid 2732 |
. . . . . . 7
β’ (πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))) = (πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))) |
24 | | eqid 2732 |
. . . . . . 7
β’ (π βΎs ran
((algScβπ) β
(algScβπ))) = (π βΎs ran
((algScβπ) β
(algScβπ))) |
25 | 3, 4, 5, 6, 22, 23, 24, 12, 13, 7, 8, 9 | selvcllemh 41149 |
. . . . . 6
β’ (π β ((πΌ evalSub π)βran ((algScβπ) β (algScβπ))) β ((πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))) RingHom (π βs (πΈ βm πΌ)))) |
26 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(πΌ mPoly
(π βΎs ran
((algScβπ) β
(algScβπ))))) =
(Baseβ(πΌ mPoly (π βΎs ran
((algScβπ) β
(algScβπ))))) |
27 | 26, 14 | rhmf 20255 |
. . . . . 6
β’ (((πΌ evalSub π)βran ((algScβπ) β (algScβπ))) β ((πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))) RingHom (π βs (πΈ βm πΌ))) β ((πΌ evalSub π)βran ((algScβπ) β (algScβπ))):(Baseβ(πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))))βΆ(Baseβ(π βs
(πΈ βm πΌ)))) |
28 | 25, 27 | syl 17 |
. . . . 5
β’ (π β ((πΌ evalSub π)βran ((algScβπ) β (algScβπ))):(Baseβ(πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))))βΆ(Baseβ(π βs
(πΈ βm πΌ)))) |
29 | 1, 2, 3, 4, 5, 6, 24, 23, 26, 7, 8, 9, 10 | selvcllem4 41150 |
. . . . 5
β’ (π β (((algScβπ) β (algScβπ)) β πΉ) β (Baseβ(πΌ mPoly (π βΎs ran ((algScβπ) β (algScβπ)))))) |
30 | 28, 29 | ffvelcdmd 7084 |
. . . 4
β’ (π β (((πΌ evalSub π)βran ((algScβπ) β (algScβπ)))β(((algScβπ) β (algScβπ)) β πΉ)) β (Baseβ(π βs (πΈ βm πΌ)))) |
31 | 12, 13, 14, 20, 21, 30 | pwselbas 17431 |
. . 3
β’ (π β (((πΌ evalSub π)βran ((algScβπ) β (algScβπ)))β(((algScβπ) β (algScβπ)) β πΉ)):(πΈ βm πΌ)βΆπΈ) |
32 | | eqid 2732 |
. . . 4
β’ (π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), ((algScβπ)β(((πΌ β π½) mVar π
)βπ₯)))) = (π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), ((algScβπ)β(((πΌ β π½) mVar π
)βπ₯)))) |
33 | 3, 4, 5, 13, 32, 7, 8, 9 | selvcllem5 41151 |
. . 3
β’ (π β (π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), ((algScβπ)β(((πΌ β π½) mVar π
)βπ₯)))) β (πΈ βm πΌ)) |
34 | 31, 33 | ffvelcdmd 7084 |
. 2
β’ (π β ((((πΌ evalSub π)βran ((algScβπ) β (algScβπ)))β(((algScβπ) β (algScβπ)) β πΉ))β(π₯ β πΌ β¦ if(π₯ β π½, ((π½ mVar π)βπ₯), ((algScβπ)β(((πΌ β π½) mVar π
)βπ₯))))) β πΈ) |
35 | 11, 34 | eqeltrd 2833 |
1
β’ (π β (((πΌ selectVars π
)βπ½)βπΉ) β πΈ) |