| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > selvcl | Structured version Visualization version GIF version | ||
| Description: Closure of the "variable selection" function. (Contributed by SN, 22-Feb-2024.) |
| Ref | Expression |
|---|---|
| selvcl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| selvcl.b | ⊢ 𝐵 = (Base‘𝑃) |
| selvcl.u | ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) |
| selvcl.t | ⊢ 𝑇 = (𝐽 mPoly 𝑈) |
| selvcl.e | ⊢ 𝐸 = (Base‘𝑇) |
| selvcl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| selvcl.j | ⊢ (𝜑 → 𝐽 ⊆ 𝐼) |
| selvcl.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| selvcl | ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selvcl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
| 2 | selvcl.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | selvcl.u | . . 3 ⊢ 𝑈 = ((𝐼 ∖ 𝐽) mPoly 𝑅) | |
| 4 | selvcl.t | . . 3 ⊢ 𝑇 = (𝐽 mPoly 𝑈) | |
| 5 | eqid 2730 | . . 3 ⊢ (algSc‘𝑇) = (algSc‘𝑇) | |
| 6 | eqid 2730 | . . 3 ⊢ ((algSc‘𝑇) ∘ (algSc‘𝑈)) = ((algSc‘𝑇) ∘ (algSc‘𝑈)) | |
| 7 | selvcl.j | . . 3 ⊢ (𝜑 → 𝐽 ⊆ 𝐼) | |
| 8 | selvcl.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | selvval 22028 | . 2 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) = ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))))) |
| 10 | eqid 2730 | . . . 4 ⊢ (𝑇 ↑s (𝐸 ↑m 𝐼)) = (𝑇 ↑s (𝐸 ↑m 𝐼)) | |
| 11 | selvcl.e | . . . 4 ⊢ 𝐸 = (Base‘𝑇) | |
| 12 | eqid 2730 | . . . 4 ⊢ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) = (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼))) | |
| 13 | 1, 2 | mplrcl 21909 | . . . . . . 7 ⊢ (𝐹 ∈ 𝐵 → 𝐼 ∈ V) |
| 14 | 8, 13 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) |
| 15 | 14, 7 | ssexd 5281 | . . . . 5 ⊢ (𝜑 → 𝐽 ∈ V) |
| 16 | 14 | difexd 5288 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∖ 𝐽) ∈ V) |
| 17 | selvcl.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 18 | 3, 16, 17 | mplcrngd 42528 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CRing) |
| 19 | 4, 15, 18 | mplcrngd 42528 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ CRing) |
| 20 | ovexd 7424 | . . . 4 ⊢ (𝜑 → (𝐸 ↑m 𝐼) ∈ V) | |
| 21 | eqid 2730 | . . . . . . 7 ⊢ ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
| 22 | eqid 2730 | . . . . . . 7 ⊢ (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) = (𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) | |
| 23 | eqid 2730 | . . . . . . 7 ⊢ (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) = (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) | |
| 24 | 3, 4, 5, 6, 21, 22, 23, 10, 11, 14, 17, 7 | selvcllemh 42561 | . . . . . 6 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼)))) |
| 25 | eqid 2730 | . . . . . . 7 ⊢ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) = (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈))))) | |
| 26 | 25, 12 | rhmf 20400 | . . . . . 6 ⊢ (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))) ∈ ((𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))) RingHom (𝑇 ↑s (𝐸 ↑m 𝐼))) → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
| 27 | 24, 26 | syl 17 | . . . . 5 ⊢ (𝜑 → ((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈))):(Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))⟶(Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
| 28 | 1, 2, 3, 4, 5, 6, 23, 22, 25, 17, 7, 8 | selvcllem4 42562 | . . . . 5 ⊢ (𝜑 → (((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹) ∈ (Base‘(𝐼 mPoly (𝑇 ↾s ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))))) |
| 29 | 27, 28 | ffvelcdmd 7059 | . . . 4 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)) ∈ (Base‘(𝑇 ↑s (𝐸 ↑m 𝐼)))) |
| 30 | 10, 11, 12, 19, 20, 29 | pwselbas 17458 | . . 3 ⊢ (𝜑 → (((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹)):(𝐸 ↑m 𝐼)⟶𝐸) |
| 31 | eqid 2730 | . . . 4 ⊢ (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) = (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) | |
| 32 | 3, 4, 5, 11, 31, 14, 17, 7 | selvcllem5 42563 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥)))) ∈ (𝐸 ↑m 𝐼)) |
| 33 | 30, 32 | ffvelcdmd 7059 | . 2 ⊢ (𝜑 → ((((𝐼 evalSub 𝑇)‘ran ((algSc‘𝑇) ∘ (algSc‘𝑈)))‘(((algSc‘𝑇) ∘ (algSc‘𝑈)) ∘ 𝐹))‘(𝑥 ∈ 𝐼 ↦ if(𝑥 ∈ 𝐽, ((𝐽 mVar 𝑈)‘𝑥), ((algSc‘𝑇)‘(((𝐼 ∖ 𝐽) mVar 𝑅)‘𝑥))))) ∈ 𝐸) |
| 34 | 9, 33 | eqeltrd 2829 | 1 ⊢ (𝜑 → (((𝐼 selectVars 𝑅)‘𝐽)‘𝐹) ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 ifcif 4490 ↦ cmpt 5190 ran crn 5641 ∘ ccom 5644 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 Basecbs 17185 ↾s cress 17206 ↑s cpws 17415 CRingccrg 20149 RingHom crh 20384 algSccascl 21767 mVar cmvr 21820 mPoly cmpl 21821 evalSub ces 21985 selectVars cslv 22021 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-ofr 7656 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-pm 8804 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-srg 20102 df-ring 20150 df-cring 20151 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-lmod 20774 df-lss 20844 df-lsp 20884 df-assa 21768 df-asp 21769 df-ascl 21770 df-psr 21824 df-mvr 21825 df-mpl 21826 df-evls 21987 df-selv 22025 |
| This theorem is referenced by: evlselv 42568 |
| Copyright terms: Public domain | W3C validator |