Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch1 Structured version   Visualization version   GIF version

Theorem dnnumch1 43035
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 10049. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.a . 2 (𝜑𝐴𝑉)
2 recsval 8423 . . . . . . 7 (𝑥 ∈ On → (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)))
3 dnnumch.f . . . . . . . 8 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
43fveq1i 6882 . . . . . . 7 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥)
53tfr1 8416 . . . . . . . . . . 11 𝐹 Fn On
6 fnfun 6643 . . . . . . . . . . 11 (𝐹 Fn On → Fun 𝐹)
75, 6ax-mp 5 . . . . . . . . . 10 Fun 𝐹
8 vex 3468 . . . . . . . . . 10 𝑥 ∈ V
9 resfunexg 7212 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
107, 8, 9mp2an 692 . . . . . . . . 9 (𝐹𝑥) ∈ V
11 rneq 5921 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ran 𝑤 = ran (𝐹𝑥))
12 df-ima 5672 . . . . . . . . . . . . 13 (𝐹𝑥) = ran (𝐹𝑥)
1311, 12eqtr4di 2789 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → ran 𝑤 = (𝐹𝑥))
1413difeq2d 4106 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐴 ∖ ran 𝑤) = (𝐴 ∖ (𝐹𝑥)))
1514fveq2d 6885 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → (𝐺‘(𝐴 ∖ ran 𝑤)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
16 rneq 5921 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → ran 𝑧 = ran 𝑤)
1716difeq2d 4106 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐴 ∖ ran 𝑧) = (𝐴 ∖ ran 𝑤))
1817fveq2d 6885 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝐺‘(𝐴 ∖ ran 𝑧)) = (𝐺‘(𝐴 ∖ ran 𝑤)))
1918cbvmptv 5230 . . . . . . . . . 10 (𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))) = (𝑤 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑤)))
20 fvex 6894 . . . . . . . . . 10 (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2115, 19, 20fvmpt 6991 . . . . . . . . 9 ((𝐹𝑥) ∈ V → ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2210, 21ax-mp 5 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥)))
233reseq1i 5967 . . . . . . . . 9 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)
2423fveq2i 6884 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
2522, 24eqtr3i 2761 . . . . . . 7 (𝐺‘(𝐴 ∖ (𝐹𝑥))) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
262, 4, 253eqtr4g 2796 . . . . . 6 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2726ad2antlr 727 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
28 difss 4116 . . . . . . . . 9 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
29 elpw2g 5308 . . . . . . . . . 10 (𝐴𝑉 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
301, 29syl 17 . . . . . . . . 9 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
3128, 30mpbiri 258 . . . . . . . 8 (𝜑 → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
32 dnnumch.g . . . . . . . 8 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
33 neeq1 2995 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
34 fveq2 6881 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝐺𝑦) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
35 id 22 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
3634, 35eleq12d 2829 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝐺𝑦) ∈ 𝑦 ↔ (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3733, 36imbi12d 344 . . . . . . . . 9 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
3837rspcva 3604 . . . . . . . 8 (((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3931, 32, 38syl2anc 584 . . . . . . 7 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4039adantr 480 . . . . . 6 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4140imp 406 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
4227, 41eqeltrd 2835 . . . 4 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
4342ex 412 . . 3 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4443ralrimiva 3133 . 2 (𝜑 → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
455tz7.49c 8465 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
461, 44, 45syl2anc 584 1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  wss 3931  c0 4313  𝒫 cpw 4580  cmpt 5206  ran crn 5660  cres 5661  cima 5662  Oncon0 6357  Fun wfun 6530   Fn wfn 6531  1-1-ontowf1o 6535  cfv 6536  recscrecs 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390
This theorem is referenced by:  dnnumch2  43036
  Copyright terms: Public domain W3C validator