Step | Hyp | Ref
| Expression |
1 | | dnnumch.a |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2 | | recsval 8235 |
. . . . . . 7
⊢ (𝑥 ∈ On → (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))) |
3 | | dnnumch.f |
. . . . . . . 8
⊢ 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) |
4 | 3 | fveq1i 6775 |
. . . . . . 7
⊢ (𝐹‘𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) |
5 | 3 | tfr1 8228 |
. . . . . . . . . . 11
⊢ 𝐹 Fn On |
6 | | fnfun 6533 |
. . . . . . . . . . 11
⊢ (𝐹 Fn On → Fun 𝐹) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . . . 10
⊢ Fun 𝐹 |
8 | | vex 3436 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
9 | | resfunexg 7091 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑥 ∈ V) → (𝐹 ↾ 𝑥) ∈ V) |
10 | 7, 8, 9 | mp2an 689 |
. . . . . . . . 9
⊢ (𝐹 ↾ 𝑥) ∈ V |
11 | | rneq 5845 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝐹 ↾ 𝑥) → ran 𝑤 = ran (𝐹 ↾ 𝑥)) |
12 | | df-ima 5602 |
. . . . . . . . . . . . 13
⊢ (𝐹 “ 𝑥) = ran (𝐹 ↾ 𝑥) |
13 | 11, 12 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝐹 ↾ 𝑥) → ran 𝑤 = (𝐹 “ 𝑥)) |
14 | 13 | difeq2d 4057 |
. . . . . . . . . . 11
⊢ (𝑤 = (𝐹 ↾ 𝑥) → (𝐴 ∖ ran 𝑤) = (𝐴 ∖ (𝐹 “ 𝑥))) |
15 | 14 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝑤 = (𝐹 ↾ 𝑥) → (𝐺‘(𝐴 ∖ ran 𝑤)) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
16 | | rneq 5845 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑤 → ran 𝑧 = ran 𝑤) |
17 | 16 | difeq2d 4057 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑤 → (𝐴 ∖ ran 𝑧) = (𝐴 ∖ ran 𝑤)) |
18 | 17 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑤 → (𝐺‘(𝐴 ∖ ran 𝑧)) = (𝐺‘(𝐴 ∖ ran 𝑤))) |
19 | 18 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))) = (𝑤 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑤))) |
20 | | fvex 6787 |
. . . . . . . . . 10
⊢ (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ V |
21 | 15, 19, 20 | fvmpt 6875 |
. . . . . . . . 9
⊢ ((𝐹 ↾ 𝑥) ∈ V → ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹 ↾ 𝑥)) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
22 | 10, 21 | ax-mp 5 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹 ↾ 𝑥)) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) |
23 | 3 | reseq1i 5887 |
. . . . . . . . 9
⊢ (𝐹 ↾ 𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥) |
24 | 23 | fveq2i 6777 |
. . . . . . . 8
⊢ ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹 ↾ 𝑥)) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)) |
25 | 22, 24 | eqtr3i 2768 |
. . . . . . 7
⊢ (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)) |
26 | 2, 4, 25 | 3eqtr4g 2803 |
. . . . . 6
⊢ (𝑥 ∈ On → (𝐹‘𝑥) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
27 | 26 | ad2antlr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅) → (𝐹‘𝑥) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
28 | | difss 4066 |
. . . . . . . . 9
⊢ (𝐴 ∖ (𝐹 “ 𝑥)) ⊆ 𝐴 |
29 | | elpw2g 5268 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹 “ 𝑥)) ⊆ 𝐴)) |
30 | 1, 29 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹 “ 𝑥)) ⊆ 𝐴)) |
31 | 28, 30 | mpbiri 257 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴) |
32 | | dnnumch.g |
. . . . . . . 8
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) |
33 | | neeq1 3006 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅)) |
34 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐺‘𝑦) = (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥)))) |
35 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → 𝑦 = (𝐴 ∖ (𝐹 “ 𝑥))) |
36 | 34, 35 | eleq12d 2833 |
. . . . . . . . . 10
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝐺‘𝑦) ∈ 𝑦 ↔ (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
37 | 33, 36 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑦 = (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))))) |
38 | 37 | rspcva 3559 |
. . . . . . . 8
⊢ (((𝐴 ∖ (𝐹 “ 𝑥)) ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺‘𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
39 | 31, 32, 38 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
40 | 39 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ On) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
41 | 40 | imp 407 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅) → (𝐺‘(𝐴 ∖ (𝐹 “ 𝑥))) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) |
42 | 27, 41 | eqeltrd 2839 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅) → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) |
43 | 42 | ex 413 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ On) → ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
44 | 43 | ralrimiva 3103 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
45 | 5 | tz7.49c 8277 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹 “ 𝑥)) ≠ ∅ → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |
46 | 1, 44, 45 | syl2anc 584 |
1
⊢ (𝜑 → ∃𝑥 ∈ On (𝐹 ↾ 𝑥):𝑥–1-1-onto→𝐴) |