Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dnnumch1 Structured version   Visualization version   GIF version

Theorem dnnumch1 41772
Description: Define an enumeration of a set from a choice function; second part, it restricts to a bijection. EDITORIAL: overlaps dfac8a 10022. (Contributed by Stefan O'Rear, 18-Jan-2015.)
Hypotheses
Ref Expression
dnnumch.f 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
dnnumch.a (𝜑𝐴𝑉)
dnnumch.g (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
Assertion
Ref Expression
dnnumch1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑧)   𝐹(𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem dnnumch1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dnnumch.a . 2 (𝜑𝐴𝑉)
2 recsval 8401 . . . . . . 7 (𝑥 ∈ On → (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)))
3 dnnumch.f . . . . . . . 8 𝐹 = recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))
43fveq1i 6890 . . . . . . 7 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))))‘𝑥)
53tfr1 8394 . . . . . . . . . . 11 𝐹 Fn On
6 fnfun 6647 . . . . . . . . . . 11 (𝐹 Fn On → Fun 𝐹)
75, 6ax-mp 5 . . . . . . . . . 10 Fun 𝐹
8 vex 3479 . . . . . . . . . 10 𝑥 ∈ V
9 resfunexg 7214 . . . . . . . . . 10 ((Fun 𝐹𝑥 ∈ V) → (𝐹𝑥) ∈ V)
107, 8, 9mp2an 691 . . . . . . . . 9 (𝐹𝑥) ∈ V
11 rneq 5934 . . . . . . . . . . . . 13 (𝑤 = (𝐹𝑥) → ran 𝑤 = ran (𝐹𝑥))
12 df-ima 5689 . . . . . . . . . . . . 13 (𝐹𝑥) = ran (𝐹𝑥)
1311, 12eqtr4di 2791 . . . . . . . . . . . 12 (𝑤 = (𝐹𝑥) → ran 𝑤 = (𝐹𝑥))
1413difeq2d 4122 . . . . . . . . . . 11 (𝑤 = (𝐹𝑥) → (𝐴 ∖ ran 𝑤) = (𝐴 ∖ (𝐹𝑥)))
1514fveq2d 6893 . . . . . . . . . 10 (𝑤 = (𝐹𝑥) → (𝐺‘(𝐴 ∖ ran 𝑤)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
16 rneq 5934 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → ran 𝑧 = ran 𝑤)
1716difeq2d 4122 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐴 ∖ ran 𝑧) = (𝐴 ∖ ran 𝑤))
1817fveq2d 6893 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝐺‘(𝐴 ∖ ran 𝑧)) = (𝐺‘(𝐴 ∖ ran 𝑤)))
1918cbvmptv 5261 . . . . . . . . . 10 (𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧))) = (𝑤 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑤)))
20 fvex 6902 . . . . . . . . . 10 (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ V
2115, 19, 20fvmpt 6996 . . . . . . . . 9 ((𝐹𝑥) ∈ V → ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2210, 21ax-mp 5 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = (𝐺‘(𝐴 ∖ (𝐹𝑥)))
233reseq1i 5976 . . . . . . . . 9 (𝐹𝑥) = (recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥)
2423fveq2i 6892 . . . . . . . 8 ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(𝐹𝑥)) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
2522, 24eqtr3i 2763 . . . . . . 7 (𝐺‘(𝐴 ∖ (𝐹𝑥))) = ((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))‘(recs((𝑧 ∈ V ↦ (𝐺‘(𝐴 ∖ ran 𝑧)))) ↾ 𝑥))
262, 4, 253eqtr4g 2798 . . . . . 6 (𝑥 ∈ On → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
2726ad2antlr 726 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
28 difss 4131 . . . . . . . . 9 (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴
29 elpw2g 5344 . . . . . . . . . 10 (𝐴𝑉 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
301, 29syl 17 . . . . . . . . 9 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ↔ (𝐴 ∖ (𝐹𝑥)) ⊆ 𝐴))
3128, 30mpbiri 258 . . . . . . . 8 (𝜑 → (𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴)
32 dnnumch.g . . . . . . . 8 (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦))
33 neeq1 3004 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝑦 ≠ ∅ ↔ (𝐴 ∖ (𝐹𝑥)) ≠ ∅))
34 fveq2 6889 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → (𝐺𝑦) = (𝐺‘(𝐴 ∖ (𝐹𝑥))))
35 id 22 . . . . . . . . . . 11 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → 𝑦 = (𝐴 ∖ (𝐹𝑥)))
3634, 35eleq12d 2828 . . . . . . . . . 10 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝐺𝑦) ∈ 𝑦 ↔ (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3733, 36imbi12d 345 . . . . . . . . 9 (𝑦 = (𝐴 ∖ (𝐹𝑥)) → ((𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦) ↔ ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))))
3837rspcva 3611 . . . . . . . 8 (((𝐴 ∖ (𝐹𝑥)) ∈ 𝒫 𝐴 ∧ ∀𝑦 ∈ 𝒫 𝐴(𝑦 ≠ ∅ → (𝐺𝑦) ∈ 𝑦)) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
3931, 32, 38syl2anc 585 . . . . . . 7 (𝜑 → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4039adantr 482 . . . . . 6 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥))))
4140imp 408 . . . . 5 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐺‘(𝐴 ∖ (𝐹𝑥))) ∈ (𝐴 ∖ (𝐹𝑥)))
4227, 41eqeltrd 2834 . . . 4 (((𝜑𝑥 ∈ On) ∧ (𝐴 ∖ (𝐹𝑥)) ≠ ∅) → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))
4342ex 414 . . 3 ((𝜑𝑥 ∈ On) → ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
4443ralrimiva 3147 . 2 (𝜑 → ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
455tz7.49c 8443 . 2 ((𝐴𝑉 ∧ ∀𝑥 ∈ On ((𝐴 ∖ (𝐹𝑥)) ≠ ∅ → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)))) → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
461, 44, 45syl2anc 585 1 (𝜑 → ∃𝑥 ∈ On (𝐹𝑥):𝑥1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  Vcvv 3475  cdif 3945  wss 3948  c0 4322  𝒫 cpw 4602  cmpt 5231  ran crn 5677  cres 5678  cima 5679  Oncon0 6362  Fun wfun 6535   Fn wfn 6536  1-1-ontowf1o 6540  cfv 6541  recscrecs 8367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368
This theorem is referenced by:  dnnumch2  41773
  Copyright terms: Public domain W3C validator