| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsruassoi | Structured version Visualization version GIF version | ||
| Description: If two elements 𝑋 and 𝑌 of a ring 𝑅 are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dvdsruassoi.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| dvdsruassoi.2 | ⊢ · = (.r‘𝑅) |
| dvdsruassoi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| dvdsruassoi.3 | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| dvdsruassoi.4 | ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvdsruassoi | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrspss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsruassoi.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitss 20344 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
| 4 | dvdsruassoi.3 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 5 | 3, 4 | sselid 3961 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| 6 | oveq1 7420 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 · 𝑋) = (𝑉 · 𝑋)) | |
| 7 | 6 | eqeq1d 2736 | . . . 4 ⊢ (𝑡 = 𝑉 → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑡 = 𝑉) → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 9 | dvdsruassoi.4 | . . 3 ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) | |
| 10 | 5, 8, 9 | rspcedvd 3607 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌) |
| 11 | dvdsruassoi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | eqid 2734 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 13 | 2, 12, 1 | ringinvcl 20360 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 14 | 11, 4, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 15 | oveq1 7420 | . . . . 5 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → (𝑠 · 𝑌) = (((invr‘𝑅)‘𝑉) · 𝑌)) | |
| 16 | 15 | eqeq1d 2736 | . . . 4 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = ((invr‘𝑅)‘𝑉)) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 18 | dvdsruassoi.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | dvdsrspss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 20 | 1, 18, 11, 14, 5, 19 | ringassd 20222 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋))) |
| 21 | eqid 2734 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 22 | 2, 12, 18, 21 | unitlinv 20361 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 23 | 11, 4, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 24 | 23 | oveq1d 7428 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
| 25 | 1, 18, 21, 11, 19 | ringlidmd 20237 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 26 | 24, 25 | eqtrd 2769 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = 𝑋) |
| 27 | 9 | oveq2d 7429 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋)) = (((invr‘𝑅)‘𝑉) · 𝑌)) |
| 28 | 20, 26, 27 | 3eqtr3rd 2778 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋) |
| 29 | 14, 17, 28 | rspcedvd 3607 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋) |
| 30 | dvdsrspss.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 31 | 1, 30, 18 | dvdsr 20330 | . . . 4 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 32 | 19 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌))) |
| 33 | 31, 32 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 34 | 1, 30, 18 | dvdsr 20330 | . . . 4 ⊢ (𝑌 ∥ 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 35 | dvdsrspss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 37 | 34, 36 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑌 ∥ 𝑋 ↔ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 38 | 33, 37 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 39 | 10, 29, 38 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5123 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 .rcmulr 17274 1rcur 20146 Ringcrg 20198 ∥rcdsr 20322 Unitcui 20323 invrcinvr 20355 RSpancrsp 21179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20325 df-unit 20326 df-invr 20356 |
| This theorem is referenced by: dvdsruasso 33348 mxidlirred 33435 |
| Copyright terms: Public domain | W3C validator |