![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsruassoi | Structured version Visualization version GIF version |
Description: If two elements 𝑋 and 𝑌 of a ring 𝑅 are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
dvdsruassoi.1 | ⊢ 𝑈 = (Unit‘𝑅) |
dvdsruassoi.2 | ⊢ · = (.r‘𝑅) |
dvdsruassoi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
dvdsruassoi.3 | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
dvdsruassoi.4 | ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvdsruassoi | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsruassoi.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitss 20397 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
4 | dvdsruassoi.3 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | 3, 4 | sselid 4000 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
6 | oveq1 7452 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 · 𝑋) = (𝑉 · 𝑋)) | |
7 | 6 | eqeq1d 2736 | . . . 4 ⊢ (𝑡 = 𝑉 → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑡 = 𝑉) → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
9 | dvdsruassoi.4 | . . 3 ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) | |
10 | 5, 8, 9 | rspcedvd 3633 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌) |
11 | dvdsruassoi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
12 | eqid 2734 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
13 | 2, 12, 1 | ringinvcl 20413 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
14 | 11, 4, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
15 | oveq1 7452 | . . . . 5 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → (𝑠 · 𝑌) = (((invr‘𝑅)‘𝑉) · 𝑌)) | |
16 | 15 | eqeq1d 2736 | . . . 4 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = ((invr‘𝑅)‘𝑉)) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
18 | dvdsruassoi.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
19 | dvdsrspss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
20 | 1, 18, 11, 14, 5, 19 | ringassd 20279 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋))) |
21 | eqid 2734 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
22 | 2, 12, 18, 21 | unitlinv 20414 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
23 | 11, 4, 22 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
24 | 23 | oveq1d 7460 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
25 | 1, 18, 21, 11, 19 | ringlidmd 20290 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
26 | 24, 25 | eqtrd 2774 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = 𝑋) |
27 | 9 | oveq2d 7461 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋)) = (((invr‘𝑅)‘𝑉) · 𝑌)) |
28 | 20, 26, 27 | 3eqtr3rd 2783 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋) |
29 | 14, 17, 28 | rspcedvd 3633 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋) |
30 | dvdsrspss.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
31 | 1, 30, 18 | dvdsr 20383 | . . . 4 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
32 | 19 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌))) |
33 | 31, 32 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
34 | 1, 30, 18 | dvdsr 20383 | . . . 4 ⊢ (𝑌 ∥ 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
35 | dvdsrspss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
36 | 35 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
37 | 34, 36 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑌 ∥ 𝑋 ↔ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
38 | 33, 37 | anbi12d 631 | . 2 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
39 | 10, 29, 38 | mpbir2and 712 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2103 ∃wrex 3072 class class class wbr 5169 ‘cfv 6572 (class class class)co 7445 Basecbs 17253 .rcmulr 17307 1rcur 20203 Ringcrg 20255 ∥rcdsr 20375 Unitcui 20376 invrcinvr 20408 RSpancrsp 21235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 ax-cnex 11236 ax-resscn 11237 ax-1cn 11238 ax-icn 11239 ax-addcl 11240 ax-addrcl 11241 ax-mulcl 11242 ax-mulrcl 11243 ax-mulcom 11244 ax-addass 11245 ax-mulass 11246 ax-distr 11247 ax-i2m1 11248 ax-1ne0 11249 ax-1rid 11250 ax-rnegex 11251 ax-rrecex 11252 ax-cnre 11253 ax-pre-lttri 11254 ax-pre-lttrn 11255 ax-pre-ltadd 11256 ax-pre-mulgt0 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-pss 3990 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-tr 5287 df-id 5597 df-eprel 5603 df-po 5611 df-so 5612 df-fr 5654 df-we 5656 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-pred 6331 df-ord 6397 df-on 6398 df-lim 6399 df-suc 6400 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-om 7900 df-2nd 8027 df-tpos 8263 df-frecs 8318 df-wrecs 8349 df-recs 8423 df-rdg 8462 df-er 8759 df-en 9000 df-dom 9001 df-sdom 9002 df-pnf 11322 df-mnf 11323 df-xr 11324 df-ltxr 11325 df-le 11326 df-sub 11518 df-neg 11519 df-nn 12290 df-2 12352 df-3 12353 df-sets 17206 df-slot 17224 df-ndx 17236 df-base 17254 df-ress 17283 df-plusg 17319 df-mulr 17320 df-0g 17496 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-grp 18971 df-minusg 18972 df-cmn 19819 df-abl 19820 df-mgp 20157 df-rng 20175 df-ur 20204 df-ring 20257 df-oppr 20355 df-dvdsr 20378 df-unit 20379 df-invr 20409 |
This theorem is referenced by: dvdsruasso 33370 mxidlirred 33457 |
Copyright terms: Public domain | W3C validator |