![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsruassoi | Structured version Visualization version GIF version |
Description: If two elements 𝑋 and 𝑌 of a ring 𝑅 are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
dvdsruassoi.1 | ⊢ 𝑈 = (Unit‘𝑅) |
dvdsruassoi.2 | ⊢ · = (.r‘𝑅) |
dvdsruassoi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
dvdsruassoi.3 | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
dvdsruassoi.4 | ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) |
Ref | Expression |
---|---|
dvdsruassoi | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
2 | dvdsruassoi.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
3 | 1, 2 | unitss 20327 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
4 | dvdsruassoi.3 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
5 | 3, 4 | sselid 3974 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
6 | oveq1 7426 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 · 𝑋) = (𝑉 · 𝑋)) | |
7 | 6 | eqeq1d 2727 | . . . 4 ⊢ (𝑡 = 𝑉 → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
8 | 7 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑡 = 𝑉) → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
9 | dvdsruassoi.4 | . . 3 ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) | |
10 | 5, 8, 9 | rspcedvd 3608 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌) |
11 | dvdsruassoi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
12 | eqid 2725 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
13 | 2, 12, 1 | ringinvcl 20343 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
14 | 11, 4, 13 | syl2anc 582 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
15 | oveq1 7426 | . . . . 5 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → (𝑠 · 𝑌) = (((invr‘𝑅)‘𝑉) · 𝑌)) | |
16 | 15 | eqeq1d 2727 | . . . 4 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
17 | 16 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = ((invr‘𝑅)‘𝑉)) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
18 | dvdsruassoi.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
19 | dvdsrspss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
20 | 1, 18, 11, 14, 5, 19 | ringassd 20209 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋))) |
21 | eqid 2725 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
22 | 2, 12, 18, 21 | unitlinv 20344 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
23 | 11, 4, 22 | syl2anc 582 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
24 | 23 | oveq1d 7434 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
25 | 1, 18, 21, 11, 19 | ringlidmd 20220 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
26 | 24, 25 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = 𝑋) |
27 | 9 | oveq2d 7435 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋)) = (((invr‘𝑅)‘𝑉) · 𝑌)) |
28 | 20, 26, 27 | 3eqtr3rd 2774 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋) |
29 | 14, 17, 28 | rspcedvd 3608 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋) |
30 | dvdsrspss.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
31 | 1, 30, 18 | dvdsr 20313 | . . . 4 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
32 | 19 | biantrurd 531 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌))) |
33 | 31, 32 | bitr4id 289 | . . 3 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
34 | 1, 30, 18 | dvdsr 20313 | . . . 4 ⊢ (𝑌 ∥ 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
35 | dvdsrspss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
36 | 35 | biantrurd 531 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
37 | 34, 36 | bitr4id 289 | . . 3 ⊢ (𝜑 → (𝑌 ∥ 𝑋 ↔ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
38 | 33, 37 | anbi12d 630 | . 2 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
39 | 10, 29, 38 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 1rcur 20133 Ringcrg 20185 ∥rcdsr 20305 Unitcui 20306 invrcinvr 20338 RSpancrsp 21115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-tpos 8232 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-oppr 20285 df-dvdsr 20308 df-unit 20309 df-invr 20339 |
This theorem is referenced by: dvdsruasso 33197 mxidlirred 33284 |
Copyright terms: Public domain | W3C validator |