| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsruassoi | Structured version Visualization version GIF version | ||
| Description: If two elements 𝑋 and 𝑌 of a ring 𝑅 are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dvdsruassoi.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| dvdsruassoi.2 | ⊢ · = (.r‘𝑅) |
| dvdsruassoi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| dvdsruassoi.3 | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| dvdsruassoi.4 | ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvdsruassoi | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrspss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsruassoi.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitss 20295 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
| 4 | dvdsruassoi.3 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 5 | 3, 4 | sselid 3932 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| 6 | oveq1 7353 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 · 𝑋) = (𝑉 · 𝑋)) | |
| 7 | 6 | eqeq1d 2733 | . . . 4 ⊢ (𝑡 = 𝑉 → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑡 = 𝑉) → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 9 | dvdsruassoi.4 | . . 3 ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) | |
| 10 | 5, 8, 9 | rspcedvd 3579 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌) |
| 11 | dvdsruassoi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 13 | 2, 12, 1 | ringinvcl 20311 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 14 | 11, 4, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 15 | oveq1 7353 | . . . . 5 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → (𝑠 · 𝑌) = (((invr‘𝑅)‘𝑉) · 𝑌)) | |
| 16 | 15 | eqeq1d 2733 | . . . 4 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = ((invr‘𝑅)‘𝑉)) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 18 | dvdsruassoi.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | dvdsrspss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 20 | 1, 18, 11, 14, 5, 19 | ringassd 20176 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋))) |
| 21 | eqid 2731 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 22 | 2, 12, 18, 21 | unitlinv 20312 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 23 | 11, 4, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 24 | 23 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
| 25 | 1, 18, 21, 11, 19 | ringlidmd 20191 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 26 | 24, 25 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = 𝑋) |
| 27 | 9 | oveq2d 7362 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋)) = (((invr‘𝑅)‘𝑉) · 𝑌)) |
| 28 | 20, 26, 27 | 3eqtr3rd 2775 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋) |
| 29 | 14, 17, 28 | rspcedvd 3579 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋) |
| 30 | dvdsrspss.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 31 | 1, 30, 18 | dvdsr 20281 | . . . 4 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 32 | 19 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌))) |
| 33 | 31, 32 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 34 | 1, 30, 18 | dvdsr 20281 | . . . 4 ⊢ (𝑌 ∥ 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 35 | dvdsrspss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 37 | 34, 36 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑌 ∥ 𝑋 ↔ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 38 | 33, 37 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 39 | 10, 29, 38 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 1rcur 20100 Ringcrg 20152 ∥rcdsr 20273 Unitcui 20274 invrcinvr 20306 RSpancrsp 21145 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 |
| This theorem is referenced by: dvdsruasso 33348 mxidlirred 33435 |
| Copyright terms: Public domain | W3C validator |