| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsruassoi | Structured version Visualization version GIF version | ||
| Description: If two elements 𝑋 and 𝑌 of a ring 𝑅 are unit multiples, then they are associates, i.e. each divides the other. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dvdsruassoi.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| dvdsruassoi.2 | ⊢ · = (.r‘𝑅) |
| dvdsruassoi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| dvdsruassoi.3 | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| dvdsruassoi.4 | ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| dvdsruassoi | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrspss.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsruassoi.1 | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 3 | 1, 2 | unitss 20291 | . . . 4 ⊢ 𝑈 ⊆ 𝐵 |
| 4 | dvdsruassoi.3 | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑈) | |
| 5 | 3, 4 | sselid 3952 | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
| 6 | oveq1 7401 | . . . . 5 ⊢ (𝑡 = 𝑉 → (𝑡 · 𝑋) = (𝑉 · 𝑋)) | |
| 7 | 6 | eqeq1d 2732 | . . . 4 ⊢ (𝑡 = 𝑉 → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑡 = 𝑉) → ((𝑡 · 𝑋) = 𝑌 ↔ (𝑉 · 𝑋) = 𝑌)) |
| 9 | dvdsruassoi.4 | . . 3 ⊢ (𝜑 → (𝑉 · 𝑋) = 𝑌) | |
| 10 | 5, 8, 9 | rspcedvd 3599 | . 2 ⊢ (𝜑 → ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌) |
| 11 | dvdsruassoi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 13 | 2, 12, 1 | ringinvcl 20307 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 14 | 11, 4, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((invr‘𝑅)‘𝑉) ∈ 𝐵) |
| 15 | oveq1 7401 | . . . . 5 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → (𝑠 · 𝑌) = (((invr‘𝑅)‘𝑉) · 𝑌)) | |
| 16 | 15 | eqeq1d 2732 | . . . 4 ⊢ (𝑠 = ((invr‘𝑅)‘𝑉) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑠 = ((invr‘𝑅)‘𝑉)) → ((𝑠 · 𝑌) = 𝑋 ↔ (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋)) |
| 18 | dvdsruassoi.2 | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | dvdsrspss.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 20 | 1, 18, 11, 14, 5, 19 | ringassd 20172 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋))) |
| 21 | eqid 2730 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 22 | 2, 12, 18, 21 | unitlinv 20308 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ 𝑉 ∈ 𝑈) → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 23 | 11, 4, 22 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑉) = (1r‘𝑅)) |
| 24 | 23 | oveq1d 7409 | . . . . 5 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
| 25 | 1, 18, 21, 11, 19 | ringlidmd 20187 | . . . . 5 ⊢ (𝜑 → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 26 | 24, 25 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((((invr‘𝑅)‘𝑉) · 𝑉) · 𝑋) = 𝑋) |
| 27 | 9 | oveq2d 7410 | . . . 4 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · (𝑉 · 𝑋)) = (((invr‘𝑅)‘𝑉) · 𝑌)) |
| 28 | 20, 26, 27 | 3eqtr3rd 2774 | . . 3 ⊢ (𝜑 → (((invr‘𝑅)‘𝑉) · 𝑌) = 𝑋) |
| 29 | 14, 17, 28 | rspcedvd 3599 | . 2 ⊢ (𝜑 → ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋) |
| 30 | dvdsrspss.d | . . . . 5 ⊢ ∥ = (∥r‘𝑅) | |
| 31 | 1, 30, 18 | dvdsr 20277 | . . . 4 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 32 | 19 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌))) |
| 33 | 31, 32 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌)) |
| 34 | 1, 30, 18 | dvdsr 20277 | . . . 4 ⊢ (𝑌 ∥ 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 35 | dvdsrspss.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 36 | 35 | biantrurd 532 | . . . 4 ⊢ (𝜑 → (∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋 ↔ (𝑌 ∈ 𝐵 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 37 | 34, 36 | bitr4id 290 | . . 3 ⊢ (𝜑 → (𝑌 ∥ 𝑋 ↔ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋)) |
| 38 | 33, 37 | anbi12d 632 | . 2 ⊢ (𝜑 → ((𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋) ↔ (∃𝑡 ∈ 𝐵 (𝑡 · 𝑋) = 𝑌 ∧ ∃𝑠 ∈ 𝐵 (𝑠 · 𝑌) = 𝑋))) |
| 39 | 10, 29, 38 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ∧ 𝑌 ∥ 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3055 class class class wbr 5115 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 .rcmulr 17227 1rcur 20096 Ringcrg 20148 ∥rcdsr 20269 Unitcui 20270 invrcinvr 20302 RSpancrsp 21123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 |
| This theorem is referenced by: dvdsruasso 33364 mxidlirred 33451 |
| Copyright terms: Public domain | W3C validator |