Step | Hyp | Ref
| Expression |
1 | | dvdsrspss.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
2 | | dvdsruassoi.1 |
. . . . 5
β’ π = (Unitβπ
) |
3 | 1, 2 | unitss 20189 |
. . . 4
β’ π β π΅ |
4 | | dvdsruassoi.3 |
. . . 4
β’ (π β π β π) |
5 | 3, 4 | sselid 3980 |
. . 3
β’ (π β π β π΅) |
6 | | oveq1 7415 |
. . . . 5
β’ (π‘ = π β (π‘ Β· π) = (π Β· π)) |
7 | 6 | eqeq1d 2734 |
. . . 4
β’ (π‘ = π β ((π‘ Β· π) = π β (π Β· π) = π)) |
8 | 7 | adantl 482 |
. . 3
β’ ((π β§ π‘ = π) β ((π‘ Β· π) = π β (π Β· π) = π)) |
9 | | dvdsruassoi.4 |
. . 3
β’ (π β (π Β· π) = π) |
10 | 5, 8, 9 | rspcedvd 3614 |
. 2
β’ (π β βπ‘ β π΅ (π‘ Β· π) = π) |
11 | | dvdsruassoi.r |
. . . 4
β’ (π β π
β Ring) |
12 | | eqid 2732 |
. . . . 5
β’
(invrβπ
) = (invrβπ
) |
13 | 2, 12, 1 | ringinvcl 20205 |
. . . 4
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π΅) |
14 | 11, 4, 13 | syl2anc 584 |
. . 3
β’ (π β
((invrβπ
)βπ) β π΅) |
15 | | oveq1 7415 |
. . . . 5
β’ (π = ((invrβπ
)βπ) β (π Β· π) = (((invrβπ
)βπ) Β· π)) |
16 | 15 | eqeq1d 2734 |
. . . 4
β’ (π = ((invrβπ
)βπ) β ((π Β· π) = π β (((invrβπ
)βπ) Β· π) = π)) |
17 | 16 | adantl 482 |
. . 3
β’ ((π β§ π = ((invrβπ
)βπ)) β ((π Β· π) = π β (((invrβπ
)βπ) Β· π) = π)) |
18 | | dvdsruassoi.2 |
. . . . 5
β’ Β· =
(.rβπ
) |
19 | | dvdsrspss.x |
. . . . 5
β’ (π β π β π΅) |
20 | 1, 18, 11, 14, 5, 19 | ringassd 20078 |
. . . 4
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = (((invrβπ
)βπ) Β· (π Β· π))) |
21 | | eqid 2732 |
. . . . . . . 8
β’
(1rβπ
) = (1rβπ
) |
22 | 2, 12, 18, 21 | unitlinv 20206 |
. . . . . . 7
β’ ((π
β Ring β§ π β π) β (((invrβπ
)βπ) Β· π) = (1rβπ
)) |
23 | 11, 4, 22 | syl2anc 584 |
. . . . . 6
β’ (π β
(((invrβπ
)βπ) Β· π) = (1rβπ
)) |
24 | 23 | oveq1d 7423 |
. . . . 5
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = ((1rβπ
) Β· π)) |
25 | 1, 18, 21, 11, 19 | ringlidmd 20088 |
. . . . 5
β’ (π β
((1rβπ
)
Β·
π) = π) |
26 | 24, 25 | eqtrd 2772 |
. . . 4
β’ (π β
((((invrβπ
)βπ) Β· π) Β· π) = π) |
27 | 9 | oveq2d 7424 |
. . . 4
β’ (π β
(((invrβπ
)βπ) Β· (π Β· π)) = (((invrβπ
)βπ) Β· π)) |
28 | 20, 26, 27 | 3eqtr3rd 2781 |
. . 3
β’ (π β
(((invrβπ
)βπ) Β· π) = π) |
29 | 14, 17, 28 | rspcedvd 3614 |
. 2
β’ (π β βπ β π΅ (π Β· π) = π) |
30 | | dvdsrspss.d |
. . . . 5
β’ β₯ =
(β₯rβπ
) |
31 | 1, 30, 18 | dvdsr 20175 |
. . . 4
β’ (π β₯ π β (π β π΅ β§ βπ‘ β π΅ (π‘ Β· π) = π)) |
32 | 19 | biantrurd 533 |
. . . 4
β’ (π β (βπ‘ β π΅ (π‘ Β· π) = π β (π β π΅ β§ βπ‘ β π΅ (π‘ Β· π) = π))) |
33 | 31, 32 | bitr4id 289 |
. . 3
β’ (π β (π β₯ π β βπ‘ β π΅ (π‘ Β· π) = π)) |
34 | 1, 30, 18 | dvdsr 20175 |
. . . 4
β’ (π β₯ π β (π β π΅ β§ βπ β π΅ (π Β· π) = π)) |
35 | | dvdsrspss.y |
. . . . 5
β’ (π β π β π΅) |
36 | 35 | biantrurd 533 |
. . . 4
β’ (π β (βπ β π΅ (π Β· π) = π β (π β π΅ β§ βπ β π΅ (π Β· π) = π))) |
37 | 34, 36 | bitr4id 289 |
. . 3
β’ (π β (π β₯ π β βπ β π΅ (π Β· π) = π)) |
38 | 33, 37 | anbi12d 631 |
. 2
β’ (π β ((π β₯ π β§ π β₯ π) β (βπ‘ β π΅ (π‘ Β· π) = π β§ βπ β π΅ (π Β· π) = π))) |
39 | 10, 29, 38 | mpbir2and 711 |
1
β’ (π β (π β₯ π β§ π β₯ π)) |