![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsrspss | Structured version Visualization version GIF version |
Description: In a ring, an element π divides π iff the ideal generated by π is a subset of the ideal generated by π (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
dvdsrspss.b | β’ π΅ = (Baseβπ ) |
dvdsrspss.k | β’ πΎ = (RSpanβπ ) |
dvdsrspss.d | β’ β₯ = (β₯rβπ ) |
dvdsrspss.x | β’ (π β π β π΅) |
dvdsrspss.y | β’ (π β π β π΅) |
dvdsrspss.r | β’ (π β π β Ring) |
Ref | Expression |
---|---|
dvdsrspss | β’ (π β (π β₯ π β (πΎβ{π}) β (πΎβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | dvdsrspss.d | . . . 4 β’ β₯ = (β₯rβπ ) | |
3 | eqid 2726 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
4 | 1, 2, 3 | dvdsr 20264 | . . 3 β’ (π β₯ π β (π β π΅ β§ βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
5 | dvdsrspss.x | . . . 4 β’ (π β π β π΅) | |
6 | 5 | biantrurd 532 | . . 3 β’ (π β (βπ‘ β π΅ (π‘(.rβπ )π) = π β (π β π΅ β§ βπ‘ β π΅ (π‘(.rβπ )π) = π))) |
7 | 4, 6 | bitr4id 290 | . 2 β’ (π β (π β₯ π β βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
8 | dvdsrspss.r | . . . 4 β’ (π β π β Ring) | |
9 | dvdsrspss.k | . . . . 5 β’ πΎ = (RSpanβπ ) | |
10 | 1, 3, 9 | rspsnel 32990 | . . . 4 β’ ((π β Ring β§ π β π΅) β (π β (πΎβ{π}) β βπ‘ β π΅ π = (π‘(.rβπ )π))) |
11 | 8, 5, 10 | syl2anc 583 | . . 3 β’ (π β (π β (πΎβ{π}) β βπ‘ β π΅ π = (π‘(.rβπ )π))) |
12 | eqcom 2733 | . . . 4 β’ ((π‘(.rβπ )π) = π β π = (π‘(.rβπ )π)) | |
13 | 12 | rexbii 3088 | . . 3 β’ (βπ‘ β π΅ (π‘(.rβπ )π) = π β βπ‘ β π΅ π = (π‘(.rβπ )π)) |
14 | 11, 13 | bitr4di 289 | . 2 β’ (π β (π β (πΎβ{π}) β βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
15 | 8 | adantr 480 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β π β Ring) |
16 | 5 | snssd 4807 | . . . . . 6 β’ (π β {π} β π΅) |
17 | eqid 2726 | . . . . . . 7 β’ (LIdealβπ ) = (LIdealβπ ) | |
18 | 9, 1, 17 | rspcl 21094 | . . . . . 6 β’ ((π β Ring β§ {π} β π΅) β (πΎβ{π}) β (LIdealβπ )) |
19 | 8, 16, 18 | syl2anc 583 | . . . . 5 β’ (π β (πΎβ{π}) β (LIdealβπ )) |
20 | 19 | adantr 480 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β (πΎβ{π}) β (LIdealβπ )) |
21 | simpr 484 | . . . . 5 β’ ((π β§ π β (πΎβ{π})) β π β (πΎβ{π})) | |
22 | 21 | snssd 4807 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β {π} β (πΎβ{π})) |
23 | 9, 17 | rspssp 21098 | . . . 4 β’ ((π β Ring β§ (πΎβ{π}) β (LIdealβπ ) β§ {π} β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) |
24 | 15, 20, 22, 23 | syl3anc 1368 | . . 3 β’ ((π β§ π β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) |
25 | simpr 484 | . . . 4 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) | |
26 | dvdsrspss.y | . . . . . 6 β’ (π β π β π΅) | |
27 | 26 | snssd 4807 | . . . . . . 7 β’ (π β {π} β π΅) |
28 | 9, 1 | rspssid 21095 | . . . . . . 7 β’ ((π β Ring β§ {π} β π΅) β {π} β (πΎβ{π})) |
29 | 8, 27, 28 | syl2anc 583 | . . . . . 6 β’ (π β {π} β (πΎβ{π})) |
30 | snssg 4782 | . . . . . . 7 β’ (π β π΅ β (π β (πΎβ{π}) β {π} β (πΎβ{π}))) | |
31 | 30 | biimpar 477 | . . . . . 6 β’ ((π β π΅ β§ {π} β (πΎβ{π})) β π β (πΎβ{π})) |
32 | 26, 29, 31 | syl2anc 583 | . . . . 5 β’ (π β π β (πΎβ{π})) |
33 | 32 | adantr 480 | . . . 4 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β π β (πΎβ{π})) |
34 | 25, 33 | sseldd 3978 | . . 3 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β π β (πΎβ{π})) |
35 | 24, 34 | impbida 798 | . 2 β’ (π β (π β (πΎβ{π}) β (πΎβ{π}) β (πΎβ{π}))) |
36 | 7, 14, 35 | 3bitr2d 307 | 1 β’ (π β (π β₯ π β (πΎβ{π}) β (πΎβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3064 β wss 3943 {csn 4623 class class class wbr 5141 βcfv 6537 (class class class)co 7405 Basecbs 17153 .rcmulr 17207 Ringcrg 20138 β₯rcdsr 20256 LIdealclidl 21065 RSpancrsp 21066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-ip 17224 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-mgp 20040 df-ur 20087 df-ring 20140 df-dvdsr 20259 df-subrg 20471 df-lmod 20708 df-lss 20779 df-lsp 20819 df-sra 21021 df-rgmod 21022 df-lidl 21067 df-rsp 21068 |
This theorem is referenced by: rspsnasso 32998 |
Copyright terms: Public domain | W3C validator |