| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsrspss | Structured version Visualization version GIF version | ||
| Description: In a ring, an element 𝑋 divides 𝑌 iff the ideal generated by 𝑌 is a subset of the ideal generated by 𝑋 (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dvdsrspss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| dvdsrspss | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrspss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsrspss.d | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 3 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | dvdsr 20275 | . . 3 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 5 | dvdsrspss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌))) |
| 7 | 4, 6 | bitr4id 290 | . 2 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 8 | dvdsrspss.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | dvdsrspss.k | . . . . 5 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 10 | 1, 3, 9 | elrspsn 21172 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋))) |
| 11 | 8, 5, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋))) |
| 12 | eqcom 2738 | . . . 4 ⊢ ((𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ 𝑌 = (𝑡(.r‘𝑅)𝑋)) | |
| 13 | 12 | rexbii 3079 | . . 3 ⊢ (∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋)) |
| 14 | 11, 13 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 15 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → 𝑅 ∈ Ring) |
| 16 | 5 | snssd 4756 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 17 | eqid 2731 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 18 | 9, 1, 17 | rspcl 21167 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 19 | 8, 16, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑋})) | |
| 22 | 21 | snssd 4756 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → {𝑌} ⊆ (𝐾‘{𝑋})) |
| 23 | 9, 17 | rspssp 21171 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅) ∧ {𝑌} ⊆ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) |
| 24 | 15, 20, 22, 23 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) |
| 25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) | |
| 26 | dvdsrspss.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 27 | 26 | snssd 4756 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝐵) |
| 28 | 9, 1 | rspssid 21168 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ {𝑌} ⊆ 𝐵) → {𝑌} ⊆ (𝐾‘{𝑌})) |
| 29 | 8, 27, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑌} ⊆ (𝐾‘{𝑌})) |
| 30 | snssg 4731 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (𝑌 ∈ (𝐾‘{𝑌}) ↔ {𝑌} ⊆ (𝐾‘{𝑌}))) | |
| 31 | 30 | biimpar 477 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ {𝑌} ⊆ (𝐾‘{𝑌})) → 𝑌 ∈ (𝐾‘{𝑌})) |
| 32 | 26, 29, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝐾‘{𝑌})) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑌})) |
| 34 | 25, 33 | sseldd 3930 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑋})) |
| 35 | 24, 34 | impbida 800 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| 36 | 7, 14, 35 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 {csn 4571 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 Ringcrg 20146 ∥rcdsr 20267 LIdealclidl 21138 RSpancrsp 21139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-mgp 20054 df-ur 20095 df-ring 20148 df-dvdsr 20270 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-sra 21102 df-rgmod 21103 df-lidl 21140 df-rsp 21141 |
| This theorem is referenced by: rspsnasso 33345 |
| Copyright terms: Public domain | W3C validator |