![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsrspss | Structured version Visualization version GIF version |
Description: In a ring, an element π divides π iff the ideal generated by π is a subset of the ideal generated by π (Contributed by Thierry Arnoux, 22-Mar-2025.) |
Ref | Expression |
---|---|
dvdsrspss.b | β’ π΅ = (Baseβπ ) |
dvdsrspss.k | β’ πΎ = (RSpanβπ ) |
dvdsrspss.d | β’ β₯ = (β₯rβπ ) |
dvdsrspss.x | β’ (π β π β π΅) |
dvdsrspss.y | β’ (π β π β π΅) |
dvdsrspss.r | β’ (π β π β Ring) |
Ref | Expression |
---|---|
dvdsrspss | β’ (π β (π β₯ π β (πΎβ{π}) β (πΎβ{π}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsrspss.b | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | dvdsrspss.d | . . . 4 β’ β₯ = (β₯rβπ ) | |
3 | eqid 2732 | . . . 4 β’ (.rβπ ) = (.rβπ ) | |
4 | 1, 2, 3 | dvdsr 20175 | . . 3 β’ (π β₯ π β (π β π΅ β§ βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
5 | dvdsrspss.x | . . . 4 β’ (π β π β π΅) | |
6 | 5 | biantrurd 533 | . . 3 β’ (π β (βπ‘ β π΅ (π‘(.rβπ )π) = π β (π β π΅ β§ βπ‘ β π΅ (π‘(.rβπ )π) = π))) |
7 | 4, 6 | bitr4id 289 | . 2 β’ (π β (π β₯ π β βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
8 | dvdsrspss.r | . . . 4 β’ (π β π β Ring) | |
9 | dvdsrspss.k | . . . . 5 β’ πΎ = (RSpanβπ ) | |
10 | 1, 3, 9 | rspsnel 32479 | . . . 4 β’ ((π β Ring β§ π β π΅) β (π β (πΎβ{π}) β βπ‘ β π΅ π = (π‘(.rβπ )π))) |
11 | 8, 5, 10 | syl2anc 584 | . . 3 β’ (π β (π β (πΎβ{π}) β βπ‘ β π΅ π = (π‘(.rβπ )π))) |
12 | eqcom 2739 | . . . 4 β’ ((π‘(.rβπ )π) = π β π = (π‘(.rβπ )π)) | |
13 | 12 | rexbii 3094 | . . 3 β’ (βπ‘ β π΅ (π‘(.rβπ )π) = π β βπ‘ β π΅ π = (π‘(.rβπ )π)) |
14 | 11, 13 | bitr4di 288 | . 2 β’ (π β (π β (πΎβ{π}) β βπ‘ β π΅ (π‘(.rβπ )π) = π)) |
15 | 8 | adantr 481 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β π β Ring) |
16 | 5 | snssd 4812 | . . . . . 6 β’ (π β {π} β π΅) |
17 | eqid 2732 | . . . . . . 7 β’ (LIdealβπ ) = (LIdealβπ ) | |
18 | 9, 1, 17 | rspcl 20846 | . . . . . 6 β’ ((π β Ring β§ {π} β π΅) β (πΎβ{π}) β (LIdealβπ )) |
19 | 8, 16, 18 | syl2anc 584 | . . . . 5 β’ (π β (πΎβ{π}) β (LIdealβπ )) |
20 | 19 | adantr 481 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β (πΎβ{π}) β (LIdealβπ )) |
21 | simpr 485 | . . . . 5 β’ ((π β§ π β (πΎβ{π})) β π β (πΎβ{π})) | |
22 | 21 | snssd 4812 | . . . 4 β’ ((π β§ π β (πΎβ{π})) β {π} β (πΎβ{π})) |
23 | 9, 17 | rspssp 20850 | . . . 4 β’ ((π β Ring β§ (πΎβ{π}) β (LIdealβπ ) β§ {π} β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) |
24 | 15, 20, 22, 23 | syl3anc 1371 | . . 3 β’ ((π β§ π β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) |
25 | simpr 485 | . . . 4 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β (πΎβ{π}) β (πΎβ{π})) | |
26 | dvdsrspss.y | . . . . . 6 β’ (π β π β π΅) | |
27 | 26 | snssd 4812 | . . . . . . 7 β’ (π β {π} β π΅) |
28 | 9, 1 | rspssid 20847 | . . . . . . 7 β’ ((π β Ring β§ {π} β π΅) β {π} β (πΎβ{π})) |
29 | 8, 27, 28 | syl2anc 584 | . . . . . 6 β’ (π β {π} β (πΎβ{π})) |
30 | snssg 4787 | . . . . . . 7 β’ (π β π΅ β (π β (πΎβ{π}) β {π} β (πΎβ{π}))) | |
31 | 30 | biimpar 478 | . . . . . 6 β’ ((π β π΅ β§ {π} β (πΎβ{π})) β π β (πΎβ{π})) |
32 | 26, 29, 31 | syl2anc 584 | . . . . 5 β’ (π β π β (πΎβ{π})) |
33 | 32 | adantr 481 | . . . 4 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β π β (πΎβ{π})) |
34 | 25, 33 | sseldd 3983 | . . 3 β’ ((π β§ (πΎβ{π}) β (πΎβ{π})) β π β (πΎβ{π})) |
35 | 24, 34 | impbida 799 | . 2 β’ (π β (π β (πΎβ{π}) β (πΎβ{π}) β (πΎβ{π}))) |
36 | 7, 14, 35 | 3bitr2d 306 | 1 β’ (π β (π β₯ π β (πΎβ{π}) β (πΎβ{π}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 β wss 3948 {csn 4628 class class class wbr 5148 βcfv 6543 (class class class)co 7408 Basecbs 17143 .rcmulr 17197 Ringcrg 20055 β₯rcdsr 20167 LIdealclidl 20782 RSpancrsp 20783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-mgp 19987 df-ur 20004 df-ring 20057 df-dvdsr 20170 df-subrg 20316 df-lmod 20472 df-lss 20542 df-lsp 20582 df-sra 20784 df-rgmod 20785 df-lidl 20786 df-rsp 20787 |
This theorem is referenced by: rspsnasso 32487 |
Copyright terms: Public domain | W3C validator |