| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvdsrspss | Structured version Visualization version GIF version | ||
| Description: In a ring, an element 𝑋 divides 𝑌 iff the ideal generated by 𝑌 is a subset of the ideal generated by 𝑋 (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| Ref | Expression |
|---|---|
| dvdsrspss.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvdsrspss.k | ⊢ 𝐾 = (RSpan‘𝑅) |
| dvdsrspss.d | ⊢ ∥ = (∥r‘𝑅) |
| dvdsrspss.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| dvdsrspss.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| dvdsrspss.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| dvdsrspss | ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsrspss.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | dvdsrspss.d | . . . 4 ⊢ ∥ = (∥r‘𝑅) | |
| 3 | eqid 2729 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | dvdsr 20271 | . . 3 ⊢ (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 5 | dvdsrspss.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | 5 | biantrurd 532 | . . 3 ⊢ (𝜑 → (∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌))) |
| 7 | 4, 6 | bitr4id 290 | . 2 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 8 | dvdsrspss.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 9 | dvdsrspss.k | . . . . 5 ⊢ 𝐾 = (RSpan‘𝑅) | |
| 10 | 1, 3, 9 | elrspsn 21150 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋))) |
| 11 | 8, 5, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋))) |
| 12 | eqcom 2736 | . . . 4 ⊢ ((𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ 𝑌 = (𝑡(.r‘𝑅)𝑋)) | |
| 13 | 12 | rexbii 3076 | . . 3 ⊢ (∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌 ↔ ∃𝑡 ∈ 𝐵 𝑌 = (𝑡(.r‘𝑅)𝑋)) |
| 14 | 11, 13 | bitr4di 289 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ ∃𝑡 ∈ 𝐵 (𝑡(.r‘𝑅)𝑋) = 𝑌)) |
| 15 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → 𝑅 ∈ Ring) |
| 16 | 5 | snssd 4773 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝐵) |
| 17 | eqid 2729 | . . . . . . 7 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 18 | 9, 1, 17 | rspcl 21145 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ {𝑋} ⊆ 𝐵) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 19 | 8, 16, 18 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 20 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅)) |
| 21 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑋})) | |
| 22 | 21 | snssd 4773 | . . . 4 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → {𝑌} ⊆ (𝐾‘{𝑋})) |
| 23 | 9, 17 | rspssp 21149 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝐾‘{𝑋}) ∈ (LIdeal‘𝑅) ∧ {𝑌} ⊆ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) |
| 24 | 15, 20, 22, 23 | syl3anc 1373 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) |
| 25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) | |
| 26 | dvdsrspss.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 27 | 26 | snssd 4773 | . . . . . . 7 ⊢ (𝜑 → {𝑌} ⊆ 𝐵) |
| 28 | 9, 1 | rspssid 21146 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ {𝑌} ⊆ 𝐵) → {𝑌} ⊆ (𝐾‘{𝑌})) |
| 29 | 8, 27, 28 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑌} ⊆ (𝐾‘{𝑌})) |
| 30 | snssg 4747 | . . . . . . 7 ⊢ (𝑌 ∈ 𝐵 → (𝑌 ∈ (𝐾‘{𝑌}) ↔ {𝑌} ⊆ (𝐾‘{𝑌}))) | |
| 31 | 30 | biimpar 477 | . . . . . 6 ⊢ ((𝑌 ∈ 𝐵 ∧ {𝑌} ⊆ (𝐾‘{𝑌})) → 𝑌 ∈ (𝐾‘{𝑌})) |
| 32 | 26, 29, 31 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝐾‘{𝑌})) |
| 33 | 32 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑌})) |
| 34 | 25, 33 | sseldd 3947 | . . 3 ⊢ ((𝜑 ∧ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋})) → 𝑌 ∈ (𝐾‘{𝑋})) |
| 35 | 24, 34 | impbida 800 | . 2 ⊢ (𝜑 → (𝑌 ∈ (𝐾‘{𝑋}) ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| 36 | 7, 14, 35 | 3bitr2d 307 | 1 ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝐾‘{𝑌}) ⊆ (𝐾‘{𝑋}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 {csn 4589 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Ringcrg 20142 ∥rcdsr 20263 LIdealclidl 21116 RSpancrsp 21117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-mgp 20050 df-ur 20091 df-ring 20144 df-dvdsr 20266 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-rsp 21119 |
| This theorem is referenced by: rspsnasso 33359 |
| Copyright terms: Public domain | W3C validator |