MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel1 Structured version   Visualization version   GIF version

Theorem elfzel1 13255
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 13252 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzel2 12587 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6433  (class class class)co 7275  cz 12319  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-neg 11208  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fzdisj  13283  fzrev2i  13321  fzrev3  13322  uznfz  13339  elfzmlbm  13366  bcp1nk  14031  fallfacval3  15722  fzm1ne1  31110  fzmaxdif  40803  jm2.23  40818  monoords  42836  iblspltprt  43514  itgspltprt  43520  stoweidlem34  43575  iundjiun  43998  iccpartgt  44879  altgsumbcALT  45689
  Copyright terms: Public domain W3C validator