MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel1 Structured version   Visualization version   GIF version

Theorem elfzel1 13564
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 13561 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzel2 12884 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  cfv 6560  (class class class)co 7432  cz 12615  cuz 12879  ...cfz 13548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-neg 11496  df-z 12616  df-uz 12880  df-fz 13549
This theorem is referenced by:  fzdisj  13592  fzrev2i  13630  fzrev3  13631  uznfz  13651  elfzmlbm  13679  bcp1nk  14357  fallfacval3  16049  fzm1ne1  32791  fzmaxdif  42998  jm2.23  43013  monoords  45314  iblspltprt  45993  itgspltprt  45999  stoweidlem34  46054  iundjiun  46480  iccpartgt  47419  altgsumbcALT  48274
  Copyright terms: Public domain W3C validator