|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > elfzel1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elfzel1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzuz 13561 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzel2 12884 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ℤcz 12615 ℤ≥cuz 12879 ...cfz 13548 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-neg 11496 df-z 12616 df-uz 12880 df-fz 13549 | 
| This theorem is referenced by: fzdisj 13592 fzrev2i 13630 fzrev3 13631 uznfz 13651 elfzmlbm 13679 bcp1nk 14357 fallfacval3 16049 fzm1ne1 32791 fzmaxdif 42998 jm2.23 43013 monoords 45314 iblspltprt 45993 itgspltprt 45999 stoweidlem34 46054 iundjiun 46480 iccpartgt 47419 altgsumbcALT 48274 | 
| Copyright terms: Public domain | W3C validator |