MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzel1 Structured version   Visualization version   GIF version

Theorem elfzel1 13460
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzel1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)

Proof of Theorem elfzel1
StepHypRef Expression
1 elfzuz 13457 . 2 (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ𝑀))
2 eluzel2 12774 . 2 (𝐾 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 17 1 (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6499  (class class class)co 7369  cz 12505  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-neg 11384  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  fzdisj  13488  fzrev2i  13526  fzrev3  13527  uznfz  13547  elfzmlbm  13575  bcp1nk  14258  fallfacval3  15954  fzm1ne1  32761  fzmaxdif  42963  jm2.23  42978  monoords  45288  iblspltprt  45964  itgspltprt  45970  stoweidlem34  46025  iundjiun  46451  iccpartgt  47421  altgsumbcALT  48334
  Copyright terms: Public domain W3C validator