| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel1 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13535 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzel2 12855 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 ℤcz 12586 ℤ≥cuz 12850 ...cfz 13522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-neg 11467 df-z 12587 df-uz 12851 df-fz 13523 |
| This theorem is referenced by: fzdisj 13566 fzrev2i 13604 fzrev3 13605 uznfz 13625 elfzmlbm 13653 bcp1nk 14333 fallfacval3 16026 fzm1ne1 32711 fzmaxdif 42952 jm2.23 42967 monoords 45274 iblspltprt 45950 itgspltprt 45956 stoweidlem34 46011 iundjiun 46437 iccpartgt 47389 altgsumbcALT 48276 |
| Copyright terms: Public domain | W3C validator |