Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzel1 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13181 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 12516 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: fzdisj 13212 fzrev2i 13250 fzrev3 13251 uznfz 13268 elfzmlbm 13295 bcp1nk 13959 fallfacval3 15650 fzm1ne1 31012 fzmaxdif 40719 jm2.23 40734 monoords 42726 iblspltprt 43404 itgspltprt 43410 stoweidlem34 43465 iundjiun 43888 iccpartgt 44767 altgsumbcALT 45577 |
Copyright terms: Public domain | W3C validator |