![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel1 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel1 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13515 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | eluzel2 12843 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2099 ‘cfv 6542 (class class class)co 7414 ℤcz 12574 ℤ≥cuz 12838 ...cfz 13502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-neg 11463 df-z 12575 df-uz 12839 df-fz 13503 |
This theorem is referenced by: fzdisj 13546 fzrev2i 13584 fzrev3 13585 uznfz 13602 elfzmlbm 13629 bcp1nk 14294 fallfacval3 15974 fzm1ne1 32528 fzmaxdif 42314 jm2.23 42329 monoords 44592 iblspltprt 45274 itgspltprt 45280 stoweidlem34 45335 iundjiun 45761 iccpartgt 46680 altgsumbcALT 47330 |
Copyright terms: Public domain | W3C validator |