![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzmlbm | Structured version Visualization version GIF version |
Description: Subtracting the lower bound of a finite set of sequential integers from an element of this set. (Contributed by Alexander van der Vekens, 29-Mar-2018.) (Proof shortened by OpenAI, 25-Mar-2020.) |
Ref | Expression |
---|---|
elfzmlbm | ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13438 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
2 | uznn0sub 12803 | . . 3 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 − 𝑀) ∈ ℕ0) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ ℕ0) |
4 | elfzuz2 13447 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝑀)) | |
5 | uznn0sub 12803 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 𝑀) ∈ ℕ0) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝑁 − 𝑀) ∈ ℕ0) |
7 | elfzelz 13442 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℤ) | |
8 | 7 | zred 12608 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ∈ ℝ) |
9 | elfzel2 13440 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) | |
10 | 9 | zred 12608 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℝ) |
11 | elfzel1 13441 | . . . 4 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ) | |
12 | 11 | zred 12608 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑀 ∈ ℝ) |
13 | elfzle2 13446 | . . 3 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝐾 ≤ 𝑁) | |
14 | 8, 10, 12, 13 | lesub1dd 11772 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ≤ (𝑁 − 𝑀)) |
15 | elfz2nn0 13533 | . 2 ⊢ ((𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀)) ↔ ((𝐾 − 𝑀) ∈ ℕ0 ∧ (𝑁 − 𝑀) ∈ ℕ0 ∧ (𝐾 − 𝑀) ≤ (𝑁 − 𝑀))) | |
16 | 3, 6, 14, 15 | syl3anbrc 1344 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → (𝐾 − 𝑀) ∈ (0...(𝑁 − 𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5106 ‘cfv 6497 (class class class)co 7358 0cc0 11052 ≤ cle 11191 − cmin 11386 ℕ0cn0 12414 ℤ≥cuz 12764 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 ax-pre-mulgt0 11129 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-sub 11388 df-neg 11389 df-nn 12155 df-n0 12415 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: fz1fzo0m1 13621 bcm1k 14216 swrdccatin2 14618 poimirlem24 36105 |
Copyright terms: Public domain | W3C validator |