MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1nk Structured version   Visualization version   GIF version

Theorem bcp1nk 13959
Description: The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 13184 . . . . . 6 (𝐾 ∈ (0...𝑁) → 0 ∈ ℤ)
2 elfzel2 13183 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13185 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 1zzd 12281 . . . . . 6 (𝐾 ∈ (0...𝑁) → 1 ∈ ℤ)
5 fzaddel 13219 . . . . . 6 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
61, 2, 3, 4, 5syl22anc 835 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
76ibi 266 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1)))
8 1e0p1 12408 . . . . 5 1 = (0 + 1)
98oveq1i 7265 . . . 4 (1...(𝑁 + 1)) = ((0 + 1)...(𝑁 + 1))
107, 9eleqtrrdi 2850 . . 3 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ (1...(𝑁 + 1)))
11 bcm1k 13957 . . 3 ((𝐾 + 1) ∈ (1...(𝑁 + 1)) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
1210, 11syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
133zcnd 12356 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
14 ax-1cn 10860 . . . . . . 7 1 ∈ ℂ
15 pncan 11157 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1613, 14, 15sylancl 585 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝐾 + 1) − 1) = 𝐾)
1716oveq2d 7271 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁 + 1)C𝐾))
18 bcp1n 13958 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
1917, 18eqtrd 2778 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
2016oveq2d 7271 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − ((𝐾 + 1) − 1)) = ((𝑁 + 1) − 𝐾))
2120oveq1d 7270 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1)) = (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))
2219, 21oveq12d 7273 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))))
23 bcrpcl 13950 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
2423rpcnd 12703 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℂ)
252peano2zd 12358 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℤ)
2625zred 12355 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℝ)
273zred 12355 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
282zred 12355 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
29 elfzle2 13189 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
3028ltp1d 11835 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 < (𝑁 + 1))
3127, 28, 26, 29, 30lelttrd 11063 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 < (𝑁 + 1))
32 znnsub 12296 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
333, 25, 32syl2anc 583 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
3431, 33mpbid 231 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
3526, 34nndivred 11957 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℝ)
3635recnd 10934 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
3734nnred 11918 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ)
38 elfznn0 13278 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
39 nn0p1nn 12202 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
4038, 39syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ)
4137, 40nndivred 11957 . . . . . 6 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℝ)
4241recnd 10934 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℂ)
4324, 36, 42mulassd 10929 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))))
4425zcnd 12356 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
4534nncnd 11919 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
4640nncnd 11919 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℂ)
4734nnne0d 11953 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
4840nnne0d 11953 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ≠ 0)
4944, 45, 46, 47, 48dmdcan2d 11711 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁 + 1) / (𝐾 + 1)))
5049oveq2d 7271 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5143, 50eqtrd 2778 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5222, 51eqtrd 2778 . 2 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5312, 52eqtrd 2778 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135   / cdiv 11562  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-fac 13916  df-bc 13945
This theorem is referenced by:  sylow1lem1  19118
  Copyright terms: Public domain W3C validator