MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1nk Structured version   Visualization version   GIF version

Theorem bcp1nk 14352
Description: The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 13559 . . . . . 6 (𝐾 ∈ (0...𝑁) → 0 ∈ ℤ)
2 elfzel2 13558 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13560 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 1zzd 12645 . . . . . 6 (𝐾 ∈ (0...𝑁) → 1 ∈ ℤ)
5 fzaddel 13594 . . . . . 6 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
61, 2, 3, 4, 5syl22anc 839 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
76ibi 267 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1)))
8 1e0p1 12772 . . . . 5 1 = (0 + 1)
98oveq1i 7440 . . . 4 (1...(𝑁 + 1)) = ((0 + 1)...(𝑁 + 1))
107, 9eleqtrrdi 2849 . . 3 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ (1...(𝑁 + 1)))
11 bcm1k 14350 . . 3 ((𝐾 + 1) ∈ (1...(𝑁 + 1)) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
1210, 11syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
133zcnd 12720 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
14 ax-1cn 11210 . . . . . . 7 1 ∈ ℂ
15 pncan 11511 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1613, 14, 15sylancl 586 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝐾 + 1) − 1) = 𝐾)
1716oveq2d 7446 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁 + 1)C𝐾))
18 bcp1n 14351 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
1917, 18eqtrd 2774 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
2016oveq2d 7446 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − ((𝐾 + 1) − 1)) = ((𝑁 + 1) − 𝐾))
2120oveq1d 7445 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1)) = (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))
2219, 21oveq12d 7448 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))))
23 bcrpcl 14343 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
2423rpcnd 13076 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℂ)
252peano2zd 12722 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℤ)
2625zred 12719 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℝ)
273zred 12719 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
282zred 12719 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
29 elfzle2 13564 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
3028ltp1d 12195 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 < (𝑁 + 1))
3127, 28, 26, 29, 30lelttrd 11416 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 < (𝑁 + 1))
32 znnsub 12660 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
333, 25, 32syl2anc 584 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
3431, 33mpbid 232 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
3526, 34nndivred 12317 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℝ)
3635recnd 11286 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
3734nnred 12278 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ)
38 elfznn0 13656 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
39 nn0p1nn 12562 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
4038, 39syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ)
4137, 40nndivred 12317 . . . . . 6 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℝ)
4241recnd 11286 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℂ)
4324, 36, 42mulassd 11281 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))))
4425zcnd 12720 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
4534nncnd 12279 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
4640nncnd 12279 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℂ)
4734nnne0d 12313 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
4840nnne0d 12313 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ≠ 0)
4944, 45, 46, 47, 48dmdcan2d 12070 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁 + 1) / (𝐾 + 1)))
5049oveq2d 7446 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5143, 50eqtrd 2774 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5222, 51eqtrd 2774 . 2 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5312, 52eqtrd 2774 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cmin 11489   / cdiv 11917  cn 12263  0cn0 12523  cz 12610  ...cfz 13543  Ccbc 14337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-seq 14039  df-fac 14309  df-bc 14338
This theorem is referenced by:  sylow1lem1  19630
  Copyright terms: Public domain W3C validator