MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcp1nk Structured version   Visualization version   GIF version

Theorem bcp1nk 14366
Description: The proportion of one binomial coefficient to another with 𝑁 and 𝐾 increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
Assertion
Ref Expression
bcp1nk (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))

Proof of Theorem bcp1nk
StepHypRef Expression
1 elfzel1 13583 . . . . . 6 (𝐾 ∈ (0...𝑁) → 0 ∈ ℤ)
2 elfzel2 13582 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℤ)
3 elfzelz 13584 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
4 1zzd 12674 . . . . . 6 (𝐾 ∈ (0...𝑁) → 1 ∈ ℤ)
5 fzaddel 13618 . . . . . 6 (((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 1 ∈ ℤ)) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
61, 2, 3, 4, 5syl22anc 838 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝐾 ∈ (0...𝑁) ↔ (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1))))
76ibi 267 . . . 4 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ((0 + 1)...(𝑁 + 1)))
8 1e0p1 12800 . . . . 5 1 = (0 + 1)
98oveq1i 7458 . . . 4 (1...(𝑁 + 1)) = ((0 + 1)...(𝑁 + 1))
107, 9eleqtrrdi 2855 . . 3 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ (1...(𝑁 + 1)))
11 bcm1k 14364 . . 3 ((𝐾 + 1) ∈ (1...(𝑁 + 1)) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
1210, 11syl 17 . 2 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))))
133zcnd 12748 . . . . . . 7 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℂ)
14 ax-1cn 11242 . . . . . . 7 1 ∈ ℂ
15 pncan 11542 . . . . . . 7 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐾 + 1) − 1) = 𝐾)
1613, 14, 15sylancl 585 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝐾 + 1) − 1) = 𝐾)
1716oveq2d 7464 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁 + 1)C𝐾))
18 bcp1n 14365 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
1917, 18eqtrd 2780 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C((𝐾 + 1) − 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
2016oveq2d 7464 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − ((𝐾 + 1) − 1)) = ((𝑁 + 1) − 𝐾))
2120oveq1d 7463 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1)) = (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))
2219, 21oveq12d 7466 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))))
23 bcrpcl 14357 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
2423rpcnd 13101 . . . . 5 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℂ)
252peano2zd 12750 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℤ)
2625zred 12747 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℝ)
273zred 12747 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ)
282zred 12747 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℝ)
29 elfzle2 13588 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾𝑁)
3028ltp1d 12225 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝑁 < (𝑁 + 1))
3127, 28, 26, 29, 30lelttrd 11448 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 < (𝑁 + 1))
32 znnsub 12689 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
333, 25, 32syl2anc 583 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝐾 < (𝑁 + 1) ↔ ((𝑁 + 1) − 𝐾) ∈ ℕ))
3431, 33mpbid 232 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
3526, 34nndivred 12347 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℝ)
3635recnd 11318 . . . . 5 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
3734nnred 12308 . . . . . . 7 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ)
38 elfznn0 13677 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
39 nn0p1nn 12592 . . . . . . . 8 (𝐾 ∈ ℕ0 → (𝐾 + 1) ∈ ℕ)
4038, 39syl 17 . . . . . . 7 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℕ)
4137, 40nndivred 12347 . . . . . 6 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℝ)
4241recnd 11318 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) − 𝐾) / (𝐾 + 1)) ∈ ℂ)
4324, 36, 42mulassd 11313 . . . 4 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))))
4425zcnd 12748 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝑁 + 1) ∈ ℂ)
4534nncnd 12309 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
4640nncnd 12309 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ∈ ℂ)
4734nnne0d 12343 . . . . . 6 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
4840nnne0d 12343 . . . . . 6 (𝐾 ∈ (0...𝑁) → (𝐾 + 1) ≠ 0)
4944, 45, 46, 47, 48dmdcan2d 12100 . . . . 5 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁 + 1) / (𝐾 + 1)))
5049oveq2d 7464 . . . 4 (𝐾 ∈ (0...𝑁) → ((𝑁C𝐾) · (((𝑁 + 1) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1)))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5143, 50eqtrd 2780 . . 3 (𝐾 ∈ (0...𝑁) → (((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) · (((𝑁 + 1) − 𝐾) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5222, 51eqtrd 2780 . 2 (𝐾 ∈ (0...𝑁) → (((𝑁 + 1)C((𝐾 + 1) − 1)) · (((𝑁 + 1) − ((𝐾 + 1) − 1)) / (𝐾 + 1))) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
5312, 52eqtrd 2780 1 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C(𝐾 + 1)) = ((𝑁C𝐾) · ((𝑁 + 1) / (𝐾 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108   class class class wbr 5166  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520   / cdiv 11947  cn 12293  0cn0 12553  cz 12639  ...cfz 13567  Ccbc 14351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-seq 14053  df-fac 14323  df-bc 14352
This theorem is referenced by:  sylow1lem1  19640
  Copyright terms: Public domain W3C validator