Proof of Theorem fzmaxdif
Step | Hyp | Ref
| Expression |
1 | | simp2r 1198 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ (𝐸...𝐹)) |
2 | 1 | elfzelzd 13186 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℤ) |
3 | 2 | zred 12355 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℝ) |
4 | | simp2l 1197 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℤ) |
5 | 4 | zred 12355 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℝ) |
6 | | simp1r 1196 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ (𝐵...𝐶)) |
7 | | elfzel1 13184 |
. . . . . . 7
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐵 ∈ ℤ) |
8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℤ) |
9 | 8 | zred 12355 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℝ) |
10 | 5, 9 | resubcld 11333 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − 𝐵) ∈ ℝ) |
11 | 3, 10 | resubcld 11333 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ∈ ℝ) |
12 | 6 | elfzelzd 13186 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ ℤ) |
13 | 12 | zred 12355 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ ℝ) |
14 | | elfzle2 13189 |
. . . . . 6
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐷 ≤ 𝐹) |
15 | 1, 14 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ≤ 𝐹) |
16 | 3, 5, 10, 15 | lesub1dd 11521 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ (𝐹 − (𝐹 − 𝐵))) |
17 | 5 | recnd 10934 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℂ) |
18 | 9 | recnd 10934 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℂ) |
19 | 17, 18 | nncand 11267 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − (𝐹 − 𝐵)) = 𝐵) |
20 | 16, 19 | breqtrd 5096 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ 𝐵) |
21 | | elfzle1 13188 |
. . . 4
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐵 ≤ 𝐴) |
22 | 6, 21 | syl 17 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ≤ 𝐴) |
23 | 11, 9, 13, 20, 22 | letrd 11062 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ 𝐴) |
24 | | simp1l 1195 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ∈ ℤ) |
25 | 24 | zred 12355 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ∈ ℝ) |
26 | 3, 10 | readdcld 10935 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 + (𝐹 − 𝐵)) ∈ ℝ) |
27 | | elfzle2 13189 |
. . . 4
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐴 ≤ 𝐶) |
28 | 6, 27 | syl 17 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ≤ 𝐶) |
29 | 25, 3 | resubcld 11333 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ∈ ℝ) |
30 | | elfzel1 13184 |
. . . . . . . . 9
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐸 ∈ ℤ) |
31 | 1, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ∈ ℤ) |
32 | 31 | zred 12355 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ∈ ℝ) |
33 | 25, 32 | resubcld 11333 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐸) ∈ ℝ) |
34 | | elfzle1 13188 |
. . . . . . . 8
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐸 ≤ 𝐷) |
35 | 1, 34 | syl 17 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ≤ 𝐷) |
36 | 32, 3, 25, 35 | lesub2dd 11522 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ≤ (𝐶 − 𝐸)) |
37 | | simp3 1136 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) |
38 | 29, 33, 10, 36, 37 | letrd 11062 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ≤ (𝐹 − 𝐵)) |
39 | 25, 3, 10 | lesubaddd 11502 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((𝐶 − 𝐷) ≤ (𝐹 − 𝐵) ↔ 𝐶 ≤ ((𝐹 − 𝐵) + 𝐷))) |
40 | 38, 39 | mpbid 231 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ≤ ((𝐹 − 𝐵) + 𝐷)) |
41 | 10 | recnd 10934 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − 𝐵) ∈ ℂ) |
42 | 3 | recnd 10934 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℂ) |
43 | 41, 42 | addcomd 11107 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((𝐹 − 𝐵) + 𝐷) = (𝐷 + (𝐹 − 𝐵))) |
44 | 40, 43 | breqtrd 5096 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ≤ (𝐷 + (𝐹 − 𝐵))) |
45 | 13, 25, 26, 28, 44 | letrd 11062 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ≤ (𝐷 + (𝐹 − 𝐵))) |
46 | 13, 3, 10 | absdifled 15074 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵) ↔ ((𝐷 − (𝐹 − 𝐵)) ≤ 𝐴 ∧ 𝐴 ≤ (𝐷 + (𝐹 − 𝐵))))) |
47 | 23, 45, 46 | mpbir2and 709 |
1
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) |