Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzmaxdif Structured version   Visualization version   GIF version

Theorem fzmaxdif 42022
Description: Bound on the difference between two integers constrained to two possibly overlapping finite ranges. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
fzmaxdif (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (abs‘(𝐴𝐷)) ≤ (𝐹𝐵))

Proof of Theorem fzmaxdif
StepHypRef Expression
1 simp2r 1200 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ (𝐸...𝐹))
21elfzelzd 13506 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℤ)
32zred 12670 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℝ)
4 simp2l 1199 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℤ)
54zred 12670 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℝ)
6 simp1r 1198 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ (𝐵...𝐶))
7 elfzel1 13504 . . . . . . 7 (𝐴 ∈ (𝐵...𝐶) → 𝐵 ∈ ℤ)
86, 7syl 17 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℤ)
98zred 12670 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℝ)
105, 9resubcld 11646 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹𝐵) ∈ ℝ)
113, 10resubcld 11646 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ∈ ℝ)
126elfzelzd 13506 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ ℤ)
1312zred 12670 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ∈ ℝ)
14 elfzle2 13509 . . . . . 6 (𝐷 ∈ (𝐸...𝐹) → 𝐷𝐹)
151, 14syl 17 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷𝐹)
163, 5, 10, 15lesub1dd 11834 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ (𝐹 − (𝐹𝐵)))
175recnd 11246 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐹 ∈ ℂ)
189recnd 11246 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵 ∈ ℂ)
1917, 18nncand 11580 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹 − (𝐹𝐵)) = 𝐵)
2016, 19breqtrd 5174 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ 𝐵)
21 elfzle1 13508 . . . 4 (𝐴 ∈ (𝐵...𝐶) → 𝐵𝐴)
226, 21syl 17 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐵𝐴)
2311, 9, 13, 20, 22letrd 11375 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 − (𝐹𝐵)) ≤ 𝐴)
24 simp1l 1197 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ∈ ℤ)
2524zred 12670 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ∈ ℝ)
263, 10readdcld 11247 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐷 + (𝐹𝐵)) ∈ ℝ)
27 elfzle2 13509 . . . 4 (𝐴 ∈ (𝐵...𝐶) → 𝐴𝐶)
286, 27syl 17 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴𝐶)
2925, 3resubcld 11646 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ∈ ℝ)
30 elfzel1 13504 . . . . . . . . 9 (𝐷 ∈ (𝐸...𝐹) → 𝐸 ∈ ℤ)
311, 30syl 17 . . . . . . . 8 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸 ∈ ℤ)
3231zred 12670 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸 ∈ ℝ)
3325, 32resubcld 11646 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐸) ∈ ℝ)
34 elfzle1 13508 . . . . . . . 8 (𝐷 ∈ (𝐸...𝐹) → 𝐸𝐷)
351, 34syl 17 . . . . . . 7 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐸𝐷)
3632, 3, 25, 35lesub2dd 11835 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ≤ (𝐶𝐸))
37 simp3 1138 . . . . . 6 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐸) ≤ (𝐹𝐵))
3829, 33, 10, 36, 37letrd 11375 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐶𝐷) ≤ (𝐹𝐵))
3925, 3, 10lesubaddd 11815 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((𝐶𝐷) ≤ (𝐹𝐵) ↔ 𝐶 ≤ ((𝐹𝐵) + 𝐷)))
4038, 39mpbid 231 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ≤ ((𝐹𝐵) + 𝐷))
4110recnd 11246 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (𝐹𝐵) ∈ ℂ)
423recnd 11246 . . . . 5 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐷 ∈ ℂ)
4341, 42addcomd 11420 . . . 4 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((𝐹𝐵) + 𝐷) = (𝐷 + (𝐹𝐵)))
4440, 43breqtrd 5174 . . 3 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐶 ≤ (𝐷 + (𝐹𝐵)))
4513, 25, 26, 28, 44letrd 11375 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → 𝐴 ≤ (𝐷 + (𝐹𝐵)))
4613, 3, 10absdifled 15385 . 2 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → ((abs‘(𝐴𝐷)) ≤ (𝐹𝐵) ↔ ((𝐷 − (𝐹𝐵)) ≤ 𝐴𝐴 ≤ (𝐷 + (𝐹𝐵)))))
4723, 45, 46mpbir2and 711 1 (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶𝐸) ≤ (𝐹𝐵)) → (abs‘(𝐴𝐷)) ≤ (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106   class class class wbr 5148  cfv 6543  (class class class)co 7411   + caddc 11115  cle 11253  cmin 11448  cz 12562  ...cfz 13488  abscabs 15185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187
This theorem is referenced by:  acongeq  42024
  Copyright terms: Public domain W3C validator