Proof of Theorem fzmaxdif
| Step | Hyp | Ref
| Expression |
| 1 | | simp2r 1201 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ (𝐸...𝐹)) |
| 2 | 1 | elfzelzd 13565 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℤ) |
| 3 | 2 | zred 12722 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℝ) |
| 4 | | simp2l 1200 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℤ) |
| 5 | 4 | zred 12722 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℝ) |
| 6 | | simp1r 1199 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ (𝐵...𝐶)) |
| 7 | | elfzel1 13563 |
. . . . . . 7
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐵 ∈ ℤ) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℤ) |
| 9 | 8 | zred 12722 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℝ) |
| 10 | 5, 9 | resubcld 11691 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − 𝐵) ∈ ℝ) |
| 11 | 3, 10 | resubcld 11691 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ∈ ℝ) |
| 12 | 6 | elfzelzd 13565 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ ℤ) |
| 13 | 12 | zred 12722 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ∈ ℝ) |
| 14 | | elfzle2 13568 |
. . . . . 6
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐷 ≤ 𝐹) |
| 15 | 1, 14 | syl 17 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ≤ 𝐹) |
| 16 | 3, 5, 10, 15 | lesub1dd 11879 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ (𝐹 − (𝐹 − 𝐵))) |
| 17 | 5 | recnd 11289 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐹 ∈ ℂ) |
| 18 | 9 | recnd 11289 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ∈ ℂ) |
| 19 | 17, 18 | nncand 11625 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − (𝐹 − 𝐵)) = 𝐵) |
| 20 | 16, 19 | breqtrd 5169 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ 𝐵) |
| 21 | | elfzle1 13567 |
. . . 4
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐵 ≤ 𝐴) |
| 22 | 6, 21 | syl 17 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐵 ≤ 𝐴) |
| 23 | 11, 9, 13, 20, 22 | letrd 11418 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 − (𝐹 − 𝐵)) ≤ 𝐴) |
| 24 | | simp1l 1198 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ∈ ℤ) |
| 25 | 24 | zred 12722 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ∈ ℝ) |
| 26 | 3, 10 | readdcld 11290 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐷 + (𝐹 − 𝐵)) ∈ ℝ) |
| 27 | | elfzle2 13568 |
. . . 4
⊢ (𝐴 ∈ (𝐵...𝐶) → 𝐴 ≤ 𝐶) |
| 28 | 6, 27 | syl 17 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ≤ 𝐶) |
| 29 | 25, 3 | resubcld 11691 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ∈ ℝ) |
| 30 | | elfzel1 13563 |
. . . . . . . . 9
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐸 ∈ ℤ) |
| 31 | 1, 30 | syl 17 |
. . . . . . . 8
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ∈ ℤ) |
| 32 | 31 | zred 12722 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ∈ ℝ) |
| 33 | 25, 32 | resubcld 11691 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐸) ∈ ℝ) |
| 34 | | elfzle1 13567 |
. . . . . . . 8
⊢ (𝐷 ∈ (𝐸...𝐹) → 𝐸 ≤ 𝐷) |
| 35 | 1, 34 | syl 17 |
. . . . . . 7
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐸 ≤ 𝐷) |
| 36 | 32, 3, 25, 35 | lesub2dd 11880 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ≤ (𝐶 − 𝐸)) |
| 37 | | simp3 1139 |
. . . . . 6
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) |
| 38 | 29, 33, 10, 36, 37 | letrd 11418 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐶 − 𝐷) ≤ (𝐹 − 𝐵)) |
| 39 | 25, 3, 10 | lesubaddd 11860 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((𝐶 − 𝐷) ≤ (𝐹 − 𝐵) ↔ 𝐶 ≤ ((𝐹 − 𝐵) + 𝐷))) |
| 40 | 38, 39 | mpbid 232 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ≤ ((𝐹 − 𝐵) + 𝐷)) |
| 41 | 10 | recnd 11289 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (𝐹 − 𝐵) ∈ ℂ) |
| 42 | 3 | recnd 11289 |
. . . . 5
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐷 ∈ ℂ) |
| 43 | 41, 42 | addcomd 11463 |
. . . 4
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((𝐹 − 𝐵) + 𝐷) = (𝐷 + (𝐹 − 𝐵))) |
| 44 | 40, 43 | breqtrd 5169 |
. . 3
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐶 ≤ (𝐷 + (𝐹 − 𝐵))) |
| 45 | 13, 25, 26, 28, 44 | letrd 11418 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → 𝐴 ≤ (𝐷 + (𝐹 − 𝐵))) |
| 46 | 13, 3, 10 | absdifled 15473 |
. 2
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → ((abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵) ↔ ((𝐷 − (𝐹 − 𝐵)) ≤ 𝐴 ∧ 𝐴 ≤ (𝐷 + (𝐹 − 𝐵))))) |
| 47 | 23, 45, 46 | mpbir2and 713 |
1
⊢ (((𝐶 ∈ ℤ ∧ 𝐴 ∈ (𝐵...𝐶)) ∧ (𝐹 ∈ ℤ ∧ 𝐷 ∈ (𝐸...𝐹)) ∧ (𝐶 − 𝐸) ≤ (𝐹 − 𝐵)) → (abs‘(𝐴 − 𝐷)) ≤ (𝐹 − 𝐵)) |