![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13581 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 12913 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℤcz 12639 ℤ≥cuz 12903 ...cfz 13567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-neg 11523 df-z 12640 df-uz 12904 df-fz 13568 |
This theorem is referenced by: elfz1eq 13595 fzdisj 13611 fzssp1 13627 fzp1disj 13643 fzrev2i 13649 fzrev3 13650 elfz1b 13653 fznuz 13666 fznn0sub2 13692 elfzmlbm 13695 difelfznle 13699 nn0disj 13701 fz1fzo0m1 13764 fzofzp1b 13815 bcm1k 14364 bcp1nk 14366 pfxccatin12lem2 14779 spllen 14802 fsum0diag2 15831 fallfacval3 16060 fallfacval4 16091 psgnunilem2 19537 pntpbnd1 27648 crctcshwlkn0 29854 fzm1ne1 32794 swrdrevpfx 35084 swrdwlk 35094 elfzfzo 45191 sumnnodd 45551 dvnmul 45864 dvnprodlem1 45867 dvnprodlem2 45868 stoweidlem34 45955 fourierdlem11 46039 fourierdlem12 46040 fourierdlem15 46043 fourierdlem41 46069 fourierdlem48 46075 fourierdlem49 46076 fourierdlem54 46081 fourierdlem79 46106 fourierdlem102 46129 fourierdlem114 46141 etransclem23 46178 etransclem35 46190 iundjiun 46381 2elfz2melfz 47233 elfzelfzlble 47236 iccpartiltu 47296 iccpartgt 47301 |
Copyright terms: Public domain | W3C validator |