| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13482 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12803 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℤcz 12529 ℤ≥cuz 12793 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: elfz1eq 13496 fzdisj 13512 fzssp1 13528 fzp1disj 13544 fzrev2i 13550 fzrev3 13551 elfz1b 13554 fznuz 13570 fznn0sub2 13596 elfzmlbm 13599 difelfznle 13603 nn0disj 13605 fz1fzo0m1 13671 fzofzp1b 13726 bcm1k 14280 bcp1nk 14282 pfxccatin12lem2 14696 spllen 14719 fsum0diag2 15749 fallfacval3 15978 fallfacval4 16009 psgnunilem2 19425 pntpbnd1 27497 crctcshwlkn0 29751 fzm1ne1 32711 swrdrevpfx 35104 swrdwlk 35114 elfzfzo 45275 sumnnodd 45628 dvnmul 45941 dvnprodlem1 45944 dvnprodlem2 45945 stoweidlem34 46032 fourierdlem11 46116 fourierdlem12 46117 fourierdlem15 46120 fourierdlem41 46146 fourierdlem48 46152 fourierdlem49 46153 fourierdlem54 46158 fourierdlem79 46183 fourierdlem102 46206 fourierdlem114 46218 etransclem23 46255 etransclem35 46267 iundjiun 46458 2elfz2melfz 47316 elfzelfzlble 47319 iccpartiltu 47420 iccpartgt 47425 |
| Copyright terms: Public domain | W3C validator |