![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13558 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 12886 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℤcz 12611 ℤ≥cuz 12876 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-neg 11493 df-z 12612 df-uz 12877 df-fz 13545 |
This theorem is referenced by: elfz1eq 13572 fzdisj 13588 fzssp1 13604 fzp1disj 13620 fzrev2i 13626 fzrev3 13627 elfz1b 13630 fznuz 13646 fznn0sub2 13672 elfzmlbm 13675 difelfznle 13679 nn0disj 13681 fz1fzo0m1 13747 fzofzp1b 13801 bcm1k 14351 bcp1nk 14353 pfxccatin12lem2 14766 spllen 14789 fsum0diag2 15816 fallfacval3 16045 fallfacval4 16076 psgnunilem2 19528 pntpbnd1 27645 crctcshwlkn0 29851 fzm1ne1 32797 swrdrevpfx 35101 swrdwlk 35111 elfzfzo 45227 sumnnodd 45586 dvnmul 45899 dvnprodlem1 45902 dvnprodlem2 45903 stoweidlem34 45990 fourierdlem11 46074 fourierdlem12 46075 fourierdlem15 46078 fourierdlem41 46104 fourierdlem48 46110 fourierdlem49 46111 fourierdlem54 46116 fourierdlem79 46141 fourierdlem102 46164 fourierdlem114 46176 etransclem23 46213 etransclem35 46225 iundjiun 46416 2elfz2melfz 47268 elfzelfzlble 47271 iccpartiltu 47347 iccpartgt 47352 |
Copyright terms: Public domain | W3C validator |