| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13543 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12870 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 ℤcz 12596 ℤ≥cuz 12860 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-neg 11477 df-z 12597 df-uz 12861 df-fz 13530 |
| This theorem is referenced by: elfz1eq 13557 fzdisj 13573 fzssp1 13589 fzp1disj 13605 fzrev2i 13611 fzrev3 13612 elfz1b 13615 fznuz 13631 fznn0sub2 13657 elfzmlbm 13660 difelfznle 13664 nn0disj 13666 fz1fzo0m1 13732 fzofzp1b 13786 bcm1k 14337 bcp1nk 14339 pfxccatin12lem2 14752 spllen 14775 fsum0diag2 15802 fallfacval3 16031 fallfacval4 16062 psgnunilem2 19482 pntpbnd1 27567 crctcshwlkn0 29770 fzm1ne1 32734 swrdrevpfx 35097 swrdwlk 35107 elfzfzo 45260 sumnnodd 45617 dvnmul 45930 dvnprodlem1 45933 dvnprodlem2 45934 stoweidlem34 46021 fourierdlem11 46105 fourierdlem12 46106 fourierdlem15 46109 fourierdlem41 46135 fourierdlem48 46141 fourierdlem49 46142 fourierdlem54 46147 fourierdlem79 46172 fourierdlem102 46195 fourierdlem114 46207 etransclem23 46244 etransclem35 46256 iundjiun 46447 2elfz2melfz 47303 elfzelfzlble 47306 iccpartiltu 47382 iccpartgt 47387 |
| Copyright terms: Public domain | W3C validator |