![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13502 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 12836 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6543 (class class class)co 7411 ℤcz 12562 ℤ≥cuz 12826 ...cfz 13488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13489 |
This theorem is referenced by: elfz1eq 13516 fzdisj 13532 fzssp1 13548 fzp1disj 13564 fzrev2i 13570 fzrev3 13571 elfz1b 13574 fznuz 13587 fznn0sub2 13612 elfzmlbm 13615 difelfznle 13619 nn0disj 13621 fz1fzo0m1 13684 fzofzp1b 13734 bcm1k 14279 bcp1nk 14281 pfxccatin12lem2 14685 spllen 14708 fsum0diag2 15733 fallfacval3 15960 fallfacval4 15991 psgnunilem2 19404 pntpbnd1 27313 crctcshwlkn0 29330 fzm1ne1 32255 swrdrevpfx 34393 swrdwlk 34403 elfzfzo 44285 sumnnodd 44645 dvnmul 44958 dvnprodlem1 44961 dvnprodlem2 44962 stoweidlem34 45049 fourierdlem11 45133 fourierdlem12 45134 fourierdlem15 45137 fourierdlem41 45163 fourierdlem48 45169 fourierdlem49 45170 fourierdlem54 45175 fourierdlem79 45200 fourierdlem102 45223 fourierdlem114 45235 etransclem23 45272 etransclem35 45284 iundjiun 45475 2elfz2melfz 46325 elfzelfzlble 46328 iccpartiltu 46389 iccpartgt 46394 |
Copyright terms: Public domain | W3C validator |