| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13458 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12779 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-neg 11384 df-z 12506 df-uz 12770 df-fz 13445 |
| This theorem is referenced by: elfz1eq 13472 fzdisj 13488 fzssp1 13504 fzp1disj 13520 fzrev2i 13526 fzrev3 13527 elfz1b 13530 fznuz 13546 fznn0sub2 13572 elfzmlbm 13575 difelfznle 13579 nn0disj 13581 fz1fzo0m1 13647 fzofzp1b 13702 bcm1k 14256 bcp1nk 14258 pfxccatin12lem2 14672 spllen 14695 fsum0diag2 15725 fallfacval3 15954 fallfacval4 15985 psgnunilem2 19401 pntpbnd1 27473 crctcshwlkn0 29724 fzm1ne1 32684 swrdrevpfx 35077 swrdwlk 35087 elfzfzo 45248 sumnnodd 45601 dvnmul 45914 dvnprodlem1 45917 dvnprodlem2 45918 stoweidlem34 46005 fourierdlem11 46089 fourierdlem12 46090 fourierdlem15 46093 fourierdlem41 46119 fourierdlem48 46125 fourierdlem49 46126 fourierdlem54 46131 fourierdlem79 46156 fourierdlem102 46179 fourierdlem114 46191 etransclem23 46228 etransclem35 46240 iundjiun 46431 2elfz2melfz 47292 elfzelfzlble 47295 iccpartiltu 47396 iccpartgt 47401 |
| Copyright terms: Public domain | W3C validator |