![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13498 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 12832 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6544 (class class class)co 7409 ℤcz 12558 ℤ≥cuz 12822 ...cfz 13484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-neg 11447 df-z 12559 df-uz 12823 df-fz 13485 |
This theorem is referenced by: elfz1eq 13512 fzdisj 13528 fzssp1 13544 fzp1disj 13560 fzrev2i 13566 fzrev3 13567 elfz1b 13570 fznuz 13583 fznn0sub2 13608 elfzmlbm 13611 difelfznle 13615 nn0disj 13617 fz1fzo0m1 13680 fzofzp1b 13730 bcm1k 14275 bcp1nk 14277 pfxccatin12lem2 14681 spllen 14704 fsum0diag2 15729 fallfacval3 15956 fallfacval4 15987 psgnunilem2 19363 pntpbnd1 27089 crctcshwlkn0 29075 fzm1ne1 32000 swrdrevpfx 34107 swrdwlk 34117 elfzfzo 43986 sumnnodd 44346 dvnmul 44659 dvnprodlem1 44662 dvnprodlem2 44663 stoweidlem34 44750 fourierdlem11 44834 fourierdlem12 44835 fourierdlem15 44838 fourierdlem41 44864 fourierdlem48 44870 fourierdlem49 44871 fourierdlem54 44876 fourierdlem79 44901 fourierdlem102 44924 fourierdlem114 44936 etransclem23 44973 etransclem35 44985 iundjiun 45176 2elfz2melfz 46026 elfzelfzlble 46029 iccpartiltu 46090 iccpartgt 46095 |
Copyright terms: Public domain | W3C validator |