Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 13182 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
2 | eluzelz 12521 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-neg 11138 df-z 12250 df-uz 12512 df-fz 13169 |
This theorem is referenced by: elfz1eq 13196 fzdisj 13212 fzssp1 13228 fzp1disj 13244 fzrev2i 13250 fzrev3 13251 elfz1b 13254 fznuz 13267 fznn0sub2 13292 elfzmlbm 13295 difelfznle 13299 nn0disj 13301 fz1fzo0m1 13363 fzofzp1b 13413 bcm1k 13957 bcp1nk 13959 pfxccatin12lem2 14372 spllen 14395 fsum0diag2 15423 fallfacval3 15650 fallfacval4 15681 psgnunilem2 19018 pntpbnd1 26639 crctcshwlkn0 28087 fzm1ne1 31012 swrdrevpfx 32978 swrdwlk 32988 elfzfzo 42704 sumnnodd 43061 dvnmul 43374 dvnprodlem1 43377 dvnprodlem2 43378 stoweidlem34 43465 fourierdlem11 43549 fourierdlem12 43550 fourierdlem15 43553 fourierdlem41 43579 fourierdlem48 43585 fourierdlem49 43586 fourierdlem54 43591 fourierdlem79 43616 fourierdlem102 43639 fourierdlem114 43651 etransclem23 43688 etransclem35 43700 iundjiun 43888 2elfz2melfz 44698 elfzelfzlble 44701 iccpartiltu 44762 iccpartgt 44767 |
Copyright terms: Public domain | W3C validator |