| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13543 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12867 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ℤcz 12593 ℤ≥cuz 12857 ...cfz 13529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-neg 11474 df-z 12594 df-uz 12858 df-fz 13530 |
| This theorem is referenced by: elfz1eq 13557 fzdisj 13573 fzssp1 13589 fzp1disj 13605 fzrev2i 13611 fzrev3 13612 elfz1b 13615 fznuz 13631 fznn0sub2 13657 elfzmlbm 13660 difelfznle 13664 nn0disj 13666 fz1fzo0m1 13732 fzofzp1b 13786 bcm1k 14338 bcp1nk 14340 pfxccatin12lem2 14754 spllen 14777 fsum0diag2 15804 fallfacval3 16033 fallfacval4 16064 psgnunilem2 19481 pntpbnd1 27554 crctcshwlkn0 29808 fzm1ne1 32770 swrdrevpfx 35144 swrdwlk 35154 elfzfzo 45272 sumnnodd 45626 dvnmul 45939 dvnprodlem1 45942 dvnprodlem2 45943 stoweidlem34 46030 fourierdlem11 46114 fourierdlem12 46115 fourierdlem15 46118 fourierdlem41 46144 fourierdlem48 46150 fourierdlem49 46151 fourierdlem54 46156 fourierdlem79 46181 fourierdlem102 46204 fourierdlem114 46216 etransclem23 46253 etransclem35 46265 iundjiun 46456 2elfz2melfz 47314 elfzelfzlble 47317 iccpartiltu 47403 iccpartgt 47408 |
| Copyright terms: Public domain | W3C validator |