| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13424 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12745 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℤcz 12471 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: elfz1eq 13438 fzdisj 13454 fzssp1 13470 fzp1disj 13486 fzrev2i 13492 fzrev3 13493 elfz1b 13496 fznuz 13512 fznn0sub2 13538 elfzmlbm 13541 difelfznle 13545 nn0disj 13547 fz1fzo0m1 13613 fzofzp1b 13668 bcm1k 14222 bcp1nk 14224 pfxccatin12lem2 14637 spllen 14660 fsum0diag2 15690 fallfacval3 15919 fallfacval4 15950 psgnunilem2 19374 pntpbnd1 27495 crctcshwlkn0 29766 fzm1ne1 32731 swrdrevpfx 35090 swrdwlk 35100 elfzfzo 45259 sumnnodd 45611 dvnmul 45924 dvnprodlem1 45927 dvnprodlem2 45928 stoweidlem34 46015 fourierdlem11 46099 fourierdlem12 46100 fourierdlem15 46103 fourierdlem41 46129 fourierdlem48 46135 fourierdlem49 46136 fourierdlem54 46141 fourierdlem79 46166 fourierdlem102 46189 fourierdlem114 46201 etransclem23 46238 etransclem35 46250 iundjiun 46441 2elfz2melfz 47302 elfzelfzlble 47305 iccpartiltu 47406 iccpartgt 47411 |
| Copyright terms: Public domain | W3C validator |