| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elfzel2 | Structured version Visualization version GIF version | ||
| Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzel2 | ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz3 13421 | . 2 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ≥‘𝐾)) | |
| 2 | eluzelz 12742 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝐾) → 𝑁 ∈ ℤ) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ ℤ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-neg 11347 df-z 12469 df-uz 12733 df-fz 13408 |
| This theorem is referenced by: elfz1eq 13435 fzdisj 13451 fzssp1 13467 fzp1disj 13483 fzrev2i 13489 fzrev3 13490 elfz1b 13493 fznuz 13509 fznn0sub2 13535 elfzmlbm 13538 difelfznle 13542 nn0disj 13544 fz1fzo0m1 13610 fzofzp1b 13665 bcm1k 14222 bcp1nk 14224 pfxccatin12lem2 14638 spllen 14661 fsum0diag2 15690 fallfacval3 15919 fallfacval4 15950 psgnunilem2 19407 pntpbnd1 27524 crctcshwlkn0 29799 fzm1ne1 32771 swrdrevpfx 35161 swrdwlk 35171 elfzfzo 45326 sumnnodd 45678 dvnmul 45989 dvnprodlem1 45992 dvnprodlem2 45993 stoweidlem34 46080 fourierdlem11 46164 fourierdlem12 46165 fourierdlem15 46168 fourierdlem41 46194 fourierdlem48 46200 fourierdlem49 46201 fourierdlem54 46206 fourierdlem79 46231 fourierdlem102 46254 fourierdlem114 46266 etransclem23 46303 etransclem35 46315 iundjiun 46506 2elfz2melfz 47357 elfzelfzlble 47360 iccpartiltu 47461 iccpartgt 47466 |
| Copyright terms: Public domain | W3C validator |