Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoords Structured version   Visualization version   GIF version

Theorem monoords 43521
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
monoords.fk ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoords.flt ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
monoords.i (𝜑𝐼 ∈ (𝑀...𝑁))
monoords.j (𝜑𝐽 ∈ (𝑀...𝑁))
monoords.iltj (𝜑𝐼 < 𝐽)
Assertion
Ref Expression
monoords (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑘,𝐽   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoords
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoords.i . . 3 (𝜑𝐼 ∈ (𝑀...𝑁))
21ancli 549 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀...𝑁)))
3 eleq1 2825 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐼 ∈ (𝑀...𝑁)))
43anbi2d 629 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐼 ∈ (𝑀...𝑁))))
5 fveq2 6842 . . . . . 6 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
65eleq1d 2822 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐼) ∈ ℝ))
74, 6imbi12d 344 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ)))
8 monoords.fk . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
97, 8vtoclg 3525 . . 3 (𝐼 ∈ (𝑀...𝑁) → ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ))
101, 2, 9sylc 65 . 2 (𝜑 → (𝐹𝐼) ∈ ℝ)
11 elfzel1 13440 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
121, 11syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
131elfzelzd 13442 . . . . . 6 (𝜑𝐼 ∈ ℤ)
14 elfzle1 13444 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀𝐼)
151, 14syl 17 . . . . . 6 (𝜑𝑀𝐼)
16 eluz2 12769 . . . . . 6 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
1712, 13, 15, 16syl3anbrc 1343 . . . . 5 (𝜑𝐼 ∈ (ℤ𝑀))
18 elfzuz2 13446 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
191, 18syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
20 eluzelz 12773 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2119, 20syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
2213zred 12607 . . . . . 6 (𝜑𝐼 ∈ ℝ)
23 monoords.j . . . . . . . 8 (𝜑𝐽 ∈ (𝑀...𝑁))
2423elfzelzd 13442 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2524zred 12607 . . . . . 6 (𝜑𝐽 ∈ ℝ)
2621zred 12607 . . . . . 6 (𝜑𝑁 ∈ ℝ)
27 monoords.iltj . . . . . 6 (𝜑𝐼 < 𝐽)
28 elfzle2 13445 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
2923, 28syl 17 . . . . . 6 (𝜑𝐽𝑁)
3022, 25, 26, 27, 29ltletrd 11315 . . . . 5 (𝜑𝐼 < 𝑁)
31 elfzo2 13575 . . . . 5 (𝐼 ∈ (𝑀..^𝑁) ↔ (𝐼 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐼 < 𝑁))
3217, 21, 30, 31syl3anbrc 1343 . . . 4 (𝜑𝐼 ∈ (𝑀..^𝑁))
33 fzofzp1 13669 . . . 4 (𝐼 ∈ (𝑀..^𝑁) → (𝐼 + 1) ∈ (𝑀...𝑁))
3432, 33syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (𝑀...𝑁))
3534ancli 549 . . 3 (𝜑 → (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)))
36 eleq1 2825 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐼 + 1) ∈ (𝑀...𝑁)))
3736anbi2d 629 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁))))
38 fveq2 6842 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝐹𝑘) = (𝐹‘(𝐼 + 1)))
3938eleq1d 2822 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝐼 + 1)) ∈ ℝ))
4037, 39imbi12d 344 . . . 4 (𝑘 = (𝐼 + 1) → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
4140, 8vtoclg 3525 . . 3 ((𝐼 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
4234, 35, 41sylc 65 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ∈ ℝ)
4323ancli 549 . . 3 (𝜑 → (𝜑𝐽 ∈ (𝑀...𝑁)))
44 eleq1 2825 . . . . . 6 (𝑘 = 𝐽 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐽 ∈ (𝑀...𝑁)))
4544anbi2d 629 . . . . 5 (𝑘 = 𝐽 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐽 ∈ (𝑀...𝑁))))
46 fveq2 6842 . . . . . 6 (𝑘 = 𝐽 → (𝐹𝑘) = (𝐹𝐽))
4746eleq1d 2822 . . . . 5 (𝑘 = 𝐽 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐽) ∈ ℝ))
4845, 47imbi12d 344 . . . 4 (𝑘 = 𝐽 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ)))
4948, 8vtoclg 3525 . . 3 (𝐽 ∈ (𝑀...𝑁) → ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ))
5023, 43, 49sylc 65 . 2 (𝜑 → (𝐹𝐽) ∈ ℝ)
5132ancli 549 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀..^𝑁)))
52 eleq1 2825 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝐼 ∈ (𝑀..^𝑁)))
5352anbi2d 629 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀..^𝑁)) ↔ (𝜑𝐼 ∈ (𝑀..^𝑁))))
54 fvoveq1 7380 . . . . . 6 (𝑘 = 𝐼 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝐼 + 1)))
555, 54breq12d 5118 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5653, 55imbi12d 344 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))))
57 monoords.flt . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
5856, 57vtoclg 3525 . . 3 (𝐼 ∈ (𝑀..^𝑁) → ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5932, 51, 58sylc 65 . 2 (𝜑 → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))
6013peano2zd 12610 . . . 4 (𝜑 → (𝐼 + 1) ∈ ℤ)
61 zltp1le 12553 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6213, 24, 61syl2anc 584 . . . . 5 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6327, 62mpbid 231 . . . 4 (𝜑 → (𝐼 + 1) ≤ 𝐽)
64 eluz2 12769 . . . 4 (𝐽 ∈ (ℤ‘(𝐼 + 1)) ↔ ((𝐼 + 1) ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐼 + 1) ≤ 𝐽))
6560, 24, 63, 64syl3anbrc 1343 . . 3 (𝜑𝐽 ∈ (ℤ‘(𝐼 + 1)))
6612adantr 481 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℤ)
6721adantr 481 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℤ)
68 elfzelz 13441 . . . . . 6 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘 ∈ ℤ)
6968adantl 482 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℤ)
7066zred 12607 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℝ)
7169zred 12607 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℝ)
7260zred 12607 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℝ)
7372adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ∈ ℝ)
7422adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 ∈ ℝ)
7515adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝐼)
7674ltp1d 12085 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 < (𝐼 + 1))
7770, 74, 73, 75, 76lelttrd 11313 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < (𝐼 + 1))
78 elfzle1 13444 . . . . . . . 8 (𝑘 ∈ ((𝐼 + 1)...𝐽) → (𝐼 + 1) ≤ 𝑘)
7978adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ≤ 𝑘)
8070, 73, 71, 77, 79ltletrd 11315 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < 𝑘)
8170, 71, 80ltled 11303 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝑘)
8225adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽 ∈ ℝ)
8367zred 12607 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℝ)
84 elfzle2 13445 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘𝐽)
8584adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝐽)
8629adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽𝑁)
8771, 82, 83, 85, 86letrd 11312 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝑁)
8866, 67, 69, 81, 87elfzd 13432 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ (𝑀...𝑁))
8988, 8syldan 591 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐹𝑘) ∈ ℝ)
9012adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℤ)
9121adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℤ)
92 elfzelz 13441 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ∈ ℤ)
9392adantl 482 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℤ)
9490zred 12607 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℝ)
9593zred 12607 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℝ)
9672adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ∈ ℝ)
9712zred 12607 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
9822ltp1d 12085 . . . . . . . . . 10 (𝜑𝐼 < (𝐼 + 1))
9997, 22, 72, 15, 98lelttrd 11313 . . . . . . . . 9 (𝜑𝑀 < (𝐼 + 1))
10099adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < (𝐼 + 1))
101 elfzle1 13444 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → (𝐼 + 1) ≤ 𝑘)
102101adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ≤ 𝑘)
10394, 96, 95, 100, 102ltletrd 11315 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < 𝑘)
10494, 95, 103ltled 11303 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀𝑘)
10591zred 12607 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℝ)
106 peano2rem 11468 . . . . . . . . . 10 (𝐽 ∈ ℝ → (𝐽 − 1) ∈ ℝ)
10725, 106syl 17 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
108107adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
109 elfzle2 13445 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ≤ (𝐽 − 1))
110109adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝐽 − 1))
11125adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽 ∈ ℝ)
112111ltm1d 12087 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝐽)
11329adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽𝑁)
114108, 111, 105, 112, 113ltletrd 11315 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝑁)
11595, 108, 105, 110, 114lelttrd 11313 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 < 𝑁)
11695, 105, 115ltled 11303 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘𝑁)
11790, 91, 93, 104, 116elfzd 13432 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...𝑁))
118117, 8syldan 591 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ∈ ℝ)
119 peano2zm 12546 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
12091, 119syl 17 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℤ)
121120zred 12607 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℝ)
122 1red 11156 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
12325, 26, 122, 29lesub1dd 11771 . . . . . . . 8 (𝜑 → (𝐽 − 1) ≤ (𝑁 − 1))
124123adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ≤ (𝑁 − 1))
12595, 108, 121, 110, 124letrd 11312 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝑁 − 1))
12690, 120, 93, 104, 125elfzd 13432 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
127 simpr 485 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
128 fzoval 13573 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
12921, 128syl 17 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
130129eqcomd 2742 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
131130adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
132127, 131eleqtrd 2840 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
133 fzofzp1 13669 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
134132, 133syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
135 simpl 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝜑)
136135, 134jca 512 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)))
137 eleq1 2825 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑘 + 1) ∈ (𝑀...𝑁)))
138137anbi2d 629 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁))))
139 fveq2 6842 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
140139eleq1d 2822 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
141138, 140imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)))
142 eleq1 2825 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
143142anbi2d 629 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
144 fveq2 6842 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
145144eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
146143, 145imbi12d 344 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)))
147146, 8chvarvv 2002 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
148141, 147vtoclg 3525 . . . . . 6 ((𝑘 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ))
149134, 136, 148sylc 65 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
150126, 149syldan 591 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
151132, 57syldan 591 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
152126, 151syldan 591 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
153118, 150, 152ltled 11303 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
15465, 89, 153monoord 13938 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ≤ (𝐹𝐽))
15510, 42, 50, 59, 154ltletrd 11315 1 (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  1c1 11052   + caddc 11054   < clt 11189  cle 11190  cmin 11385  cz 12499  cuz 12763  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  fourierdlem34  44372
  Copyright terms: Public domain W3C validator