Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoords Structured version   Visualization version   GIF version

Theorem monoords 42374
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
monoords.fk ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoords.flt ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
monoords.i (𝜑𝐼 ∈ (𝑀...𝑁))
monoords.j (𝜑𝐽 ∈ (𝑀...𝑁))
monoords.iltj (𝜑𝐼 < 𝐽)
Assertion
Ref Expression
monoords (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑘,𝐽   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoords
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoords.i . . 3 (𝜑𝐼 ∈ (𝑀...𝑁))
21ancli 552 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀...𝑁)))
3 eleq1 2820 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐼 ∈ (𝑀...𝑁)))
43anbi2d 632 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐼 ∈ (𝑀...𝑁))))
5 fveq2 6674 . . . . . 6 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
65eleq1d 2817 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐼) ∈ ℝ))
74, 6imbi12d 348 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ)))
8 monoords.fk . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
97, 8vtoclg 3470 . . 3 (𝐼 ∈ (𝑀...𝑁) → ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ))
101, 2, 9sylc 65 . 2 (𝜑 → (𝐹𝐼) ∈ ℝ)
11 elfzel1 12997 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
121, 11syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
131elfzelzd 12999 . . . . . 6 (𝜑𝐼 ∈ ℤ)
14 elfzle1 13001 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀𝐼)
151, 14syl 17 . . . . . 6 (𝜑𝑀𝐼)
16 eluz2 12330 . . . . . 6 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
1712, 13, 15, 16syl3anbrc 1344 . . . . 5 (𝜑𝐼 ∈ (ℤ𝑀))
18 elfzuz2 13003 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
191, 18syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
20 eluzelz 12334 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2119, 20syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
2213zred 12168 . . . . . 6 (𝜑𝐼 ∈ ℝ)
23 monoords.j . . . . . . . 8 (𝜑𝐽 ∈ (𝑀...𝑁))
2423elfzelzd 12999 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2524zred 12168 . . . . . 6 (𝜑𝐽 ∈ ℝ)
2621zred 12168 . . . . . 6 (𝜑𝑁 ∈ ℝ)
27 monoords.iltj . . . . . 6 (𝜑𝐼 < 𝐽)
28 elfzle2 13002 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
2923, 28syl 17 . . . . . 6 (𝜑𝐽𝑁)
3022, 25, 26, 27, 29ltletrd 10878 . . . . 5 (𝜑𝐼 < 𝑁)
31 elfzo2 13132 . . . . 5 (𝐼 ∈ (𝑀..^𝑁) ↔ (𝐼 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐼 < 𝑁))
3217, 21, 30, 31syl3anbrc 1344 . . . 4 (𝜑𝐼 ∈ (𝑀..^𝑁))
33 fzofzp1 13225 . . . 4 (𝐼 ∈ (𝑀..^𝑁) → (𝐼 + 1) ∈ (𝑀...𝑁))
3432, 33syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (𝑀...𝑁))
3534ancli 552 . . 3 (𝜑 → (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)))
36 eleq1 2820 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐼 + 1) ∈ (𝑀...𝑁)))
3736anbi2d 632 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁))))
38 fveq2 6674 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝐹𝑘) = (𝐹‘(𝐼 + 1)))
3938eleq1d 2817 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝐼 + 1)) ∈ ℝ))
4037, 39imbi12d 348 . . . 4 (𝑘 = (𝐼 + 1) → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
4140, 8vtoclg 3470 . . 3 ((𝐼 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
4234, 35, 41sylc 65 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ∈ ℝ)
4323ancli 552 . . 3 (𝜑 → (𝜑𝐽 ∈ (𝑀...𝑁)))
44 eleq1 2820 . . . . . 6 (𝑘 = 𝐽 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐽 ∈ (𝑀...𝑁)))
4544anbi2d 632 . . . . 5 (𝑘 = 𝐽 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐽 ∈ (𝑀...𝑁))))
46 fveq2 6674 . . . . . 6 (𝑘 = 𝐽 → (𝐹𝑘) = (𝐹𝐽))
4746eleq1d 2817 . . . . 5 (𝑘 = 𝐽 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐽) ∈ ℝ))
4845, 47imbi12d 348 . . . 4 (𝑘 = 𝐽 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ)))
4948, 8vtoclg 3470 . . 3 (𝐽 ∈ (𝑀...𝑁) → ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ))
5023, 43, 49sylc 65 . 2 (𝜑 → (𝐹𝐽) ∈ ℝ)
5132ancli 552 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀..^𝑁)))
52 eleq1 2820 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝐼 ∈ (𝑀..^𝑁)))
5352anbi2d 632 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀..^𝑁)) ↔ (𝜑𝐼 ∈ (𝑀..^𝑁))))
54 fvoveq1 7193 . . . . . 6 (𝑘 = 𝐼 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝐼 + 1)))
555, 54breq12d 5043 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5653, 55imbi12d 348 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))))
57 monoords.flt . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
5856, 57vtoclg 3470 . . 3 (𝐼 ∈ (𝑀..^𝑁) → ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5932, 51, 58sylc 65 . 2 (𝜑 → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))
6013peano2zd 12171 . . . 4 (𝜑 → (𝐼 + 1) ∈ ℤ)
61 zltp1le 12113 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6213, 24, 61syl2anc 587 . . . . 5 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6327, 62mpbid 235 . . . 4 (𝜑 → (𝐼 + 1) ≤ 𝐽)
64 eluz2 12330 . . . 4 (𝐽 ∈ (ℤ‘(𝐼 + 1)) ↔ ((𝐼 + 1) ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐼 + 1) ≤ 𝐽))
6560, 24, 63, 64syl3anbrc 1344 . . 3 (𝜑𝐽 ∈ (ℤ‘(𝐼 + 1)))
6612adantr 484 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℤ)
6721adantr 484 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℤ)
68 elfzelz 12998 . . . . . 6 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘 ∈ ℤ)
6968adantl 485 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℤ)
7066zred 12168 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℝ)
7169zred 12168 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℝ)
7260zred 12168 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℝ)
7372adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ∈ ℝ)
7422adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 ∈ ℝ)
7515adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝐼)
7674ltp1d 11648 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 < (𝐼 + 1))
7770, 74, 73, 75, 76lelttrd 10876 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < (𝐼 + 1))
78 elfzle1 13001 . . . . . . . 8 (𝑘 ∈ ((𝐼 + 1)...𝐽) → (𝐼 + 1) ≤ 𝑘)
7978adantl 485 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ≤ 𝑘)
8070, 73, 71, 77, 79ltletrd 10878 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < 𝑘)
8170, 71, 80ltled 10866 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝑘)
8225adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽 ∈ ℝ)
8367zred 12168 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℝ)
84 elfzle2 13002 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘𝐽)
8584adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝐽)
8629adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽𝑁)
8771, 82, 83, 85, 86letrd 10875 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝑁)
8866, 67, 69, 81, 87elfzd 12989 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ (𝑀...𝑁))
8988, 8syldan 594 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐹𝑘) ∈ ℝ)
9012adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℤ)
9121adantr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℤ)
92 elfzelz 12998 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ∈ ℤ)
9392adantl 485 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℤ)
9490zred 12168 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℝ)
9593zred 12168 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℝ)
9672adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ∈ ℝ)
9712zred 12168 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
9822ltp1d 11648 . . . . . . . . . 10 (𝜑𝐼 < (𝐼 + 1))
9997, 22, 72, 15, 98lelttrd 10876 . . . . . . . . 9 (𝜑𝑀 < (𝐼 + 1))
10099adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < (𝐼 + 1))
101 elfzle1 13001 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → (𝐼 + 1) ≤ 𝑘)
102101adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ≤ 𝑘)
10394, 96, 95, 100, 102ltletrd 10878 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < 𝑘)
10494, 95, 103ltled 10866 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀𝑘)
10591zred 12168 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℝ)
106 peano2rem 11031 . . . . . . . . . 10 (𝐽 ∈ ℝ → (𝐽 − 1) ∈ ℝ)
10725, 106syl 17 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
108107adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
109 elfzle2 13002 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ≤ (𝐽 − 1))
110109adantl 485 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝐽 − 1))
11125adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽 ∈ ℝ)
112111ltm1d 11650 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝐽)
11329adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽𝑁)
114108, 111, 105, 112, 113ltletrd 10878 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝑁)
11595, 108, 105, 110, 114lelttrd 10876 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 < 𝑁)
11695, 105, 115ltled 10866 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘𝑁)
11790, 91, 93, 104, 116elfzd 12989 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...𝑁))
118117, 8syldan 594 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ∈ ℝ)
119 peano2zm 12106 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
12091, 119syl 17 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℤ)
121120zred 12168 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℝ)
122 1red 10720 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
12325, 26, 122, 29lesub1dd 11334 . . . . . . . 8 (𝜑 → (𝐽 − 1) ≤ (𝑁 − 1))
124123adantr 484 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ≤ (𝑁 − 1))
12595, 108, 121, 110, 124letrd 10875 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝑁 − 1))
12690, 120, 93, 104, 125elfzd 12989 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
127 simpr 488 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
128 fzoval 13130 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
12921, 128syl 17 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
130129eqcomd 2744 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
131130adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
132127, 131eleqtrd 2835 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
133 fzofzp1 13225 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
134132, 133syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
135 simpl 486 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝜑)
136135, 134jca 515 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)))
137 eleq1 2820 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑘 + 1) ∈ (𝑀...𝑁)))
138137anbi2d 632 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁))))
139 fveq2 6674 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
140139eleq1d 2817 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
141138, 140imbi12d 348 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)))
142 eleq1 2820 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
143142anbi2d 632 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
144 fveq2 6674 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
145144eleq1d 2817 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
146143, 145imbi12d 348 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)))
147146, 8chvarvv 2010 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
148141, 147vtoclg 3470 . . . . . 6 ((𝑘 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ))
149134, 136, 148sylc 65 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
150126, 149syldan 594 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
151132, 57syldan 594 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
152126, 151syldan 594 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
153118, 150, 152ltled 10866 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
15465, 89, 153monoord 13492 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ≤ (𝐹𝐽))
15510, 42, 50, 59, 154ltletrd 10878 1 (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  cr 10614  1c1 10616   + caddc 10618   < clt 10753  cle 10754  cmin 10948  cz 12062  cuz 12324  ...cfz 12981  ..^cfzo 13124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-fzo 13125
This theorem is referenced by:  fourierdlem34  43224
  Copyright terms: Public domain W3C validator