Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoords Structured version   Visualization version   GIF version

Theorem monoords 42726
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
monoords.fk ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoords.flt ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
monoords.i (𝜑𝐼 ∈ (𝑀...𝑁))
monoords.j (𝜑𝐽 ∈ (𝑀...𝑁))
monoords.iltj (𝜑𝐼 < 𝐽)
Assertion
Ref Expression
monoords (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑘,𝐽   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoords
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoords.i . . 3 (𝜑𝐼 ∈ (𝑀...𝑁))
21ancli 548 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀...𝑁)))
3 eleq1 2826 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐼 ∈ (𝑀...𝑁)))
43anbi2d 628 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐼 ∈ (𝑀...𝑁))))
5 fveq2 6756 . . . . . 6 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
65eleq1d 2823 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐼) ∈ ℝ))
74, 6imbi12d 344 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ)))
8 monoords.fk . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
97, 8vtoclg 3495 . . 3 (𝐼 ∈ (𝑀...𝑁) → ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ))
101, 2, 9sylc 65 . 2 (𝜑 → (𝐹𝐼) ∈ ℝ)
11 elfzel1 13184 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
121, 11syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
131elfzelzd 13186 . . . . . 6 (𝜑𝐼 ∈ ℤ)
14 elfzle1 13188 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀𝐼)
151, 14syl 17 . . . . . 6 (𝜑𝑀𝐼)
16 eluz2 12517 . . . . . 6 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
1712, 13, 15, 16syl3anbrc 1341 . . . . 5 (𝜑𝐼 ∈ (ℤ𝑀))
18 elfzuz2 13190 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
191, 18syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
20 eluzelz 12521 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2119, 20syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
2213zred 12355 . . . . . 6 (𝜑𝐼 ∈ ℝ)
23 monoords.j . . . . . . . 8 (𝜑𝐽 ∈ (𝑀...𝑁))
2423elfzelzd 13186 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2524zred 12355 . . . . . 6 (𝜑𝐽 ∈ ℝ)
2621zred 12355 . . . . . 6 (𝜑𝑁 ∈ ℝ)
27 monoords.iltj . . . . . 6 (𝜑𝐼 < 𝐽)
28 elfzle2 13189 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
2923, 28syl 17 . . . . . 6 (𝜑𝐽𝑁)
3022, 25, 26, 27, 29ltletrd 11065 . . . . 5 (𝜑𝐼 < 𝑁)
31 elfzo2 13319 . . . . 5 (𝐼 ∈ (𝑀..^𝑁) ↔ (𝐼 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐼 < 𝑁))
3217, 21, 30, 31syl3anbrc 1341 . . . 4 (𝜑𝐼 ∈ (𝑀..^𝑁))
33 fzofzp1 13412 . . . 4 (𝐼 ∈ (𝑀..^𝑁) → (𝐼 + 1) ∈ (𝑀...𝑁))
3432, 33syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (𝑀...𝑁))
3534ancli 548 . . 3 (𝜑 → (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)))
36 eleq1 2826 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐼 + 1) ∈ (𝑀...𝑁)))
3736anbi2d 628 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁))))
38 fveq2 6756 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝐹𝑘) = (𝐹‘(𝐼 + 1)))
3938eleq1d 2823 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝐼 + 1)) ∈ ℝ))
4037, 39imbi12d 344 . . . 4 (𝑘 = (𝐼 + 1) → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
4140, 8vtoclg 3495 . . 3 ((𝐼 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
4234, 35, 41sylc 65 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ∈ ℝ)
4323ancli 548 . . 3 (𝜑 → (𝜑𝐽 ∈ (𝑀...𝑁)))
44 eleq1 2826 . . . . . 6 (𝑘 = 𝐽 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐽 ∈ (𝑀...𝑁)))
4544anbi2d 628 . . . . 5 (𝑘 = 𝐽 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐽 ∈ (𝑀...𝑁))))
46 fveq2 6756 . . . . . 6 (𝑘 = 𝐽 → (𝐹𝑘) = (𝐹𝐽))
4746eleq1d 2823 . . . . 5 (𝑘 = 𝐽 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐽) ∈ ℝ))
4845, 47imbi12d 344 . . . 4 (𝑘 = 𝐽 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ)))
4948, 8vtoclg 3495 . . 3 (𝐽 ∈ (𝑀...𝑁) → ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ))
5023, 43, 49sylc 65 . 2 (𝜑 → (𝐹𝐽) ∈ ℝ)
5132ancli 548 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀..^𝑁)))
52 eleq1 2826 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝐼 ∈ (𝑀..^𝑁)))
5352anbi2d 628 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀..^𝑁)) ↔ (𝜑𝐼 ∈ (𝑀..^𝑁))))
54 fvoveq1 7278 . . . . . 6 (𝑘 = 𝐼 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝐼 + 1)))
555, 54breq12d 5083 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5653, 55imbi12d 344 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))))
57 monoords.flt . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
5856, 57vtoclg 3495 . . 3 (𝐼 ∈ (𝑀..^𝑁) → ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5932, 51, 58sylc 65 . 2 (𝜑 → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))
6013peano2zd 12358 . . . 4 (𝜑 → (𝐼 + 1) ∈ ℤ)
61 zltp1le 12300 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6213, 24, 61syl2anc 583 . . . . 5 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6327, 62mpbid 231 . . . 4 (𝜑 → (𝐼 + 1) ≤ 𝐽)
64 eluz2 12517 . . . 4 (𝐽 ∈ (ℤ‘(𝐼 + 1)) ↔ ((𝐼 + 1) ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐼 + 1) ≤ 𝐽))
6560, 24, 63, 64syl3anbrc 1341 . . 3 (𝜑𝐽 ∈ (ℤ‘(𝐼 + 1)))
6612adantr 480 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℤ)
6721adantr 480 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℤ)
68 elfzelz 13185 . . . . . 6 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘 ∈ ℤ)
6968adantl 481 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℤ)
7066zred 12355 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℝ)
7169zred 12355 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℝ)
7260zred 12355 . . . . . . . 8 (𝜑 → (𝐼 + 1) ∈ ℝ)
7372adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ∈ ℝ)
7422adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 ∈ ℝ)
7515adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝐼)
7674ltp1d 11835 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 < (𝐼 + 1))
7770, 74, 73, 75, 76lelttrd 11063 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < (𝐼 + 1))
78 elfzle1 13188 . . . . . . . 8 (𝑘 ∈ ((𝐼 + 1)...𝐽) → (𝐼 + 1) ≤ 𝑘)
7978adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ≤ 𝑘)
8070, 73, 71, 77, 79ltletrd 11065 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < 𝑘)
8170, 71, 80ltled 11053 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝑘)
8225adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽 ∈ ℝ)
8367zred 12355 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℝ)
84 elfzle2 13189 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘𝐽)
8584adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝐽)
8629adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽𝑁)
8771, 82, 83, 85, 86letrd 11062 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝑁)
8866, 67, 69, 81, 87elfzd 13176 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ (𝑀...𝑁))
8988, 8syldan 590 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐹𝑘) ∈ ℝ)
9012adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℤ)
9121adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℤ)
92 elfzelz 13185 . . . . . . 7 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ∈ ℤ)
9392adantl 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℤ)
9490zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℝ)
9593zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℝ)
9672adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ∈ ℝ)
9712zred 12355 . . . . . . . . . 10 (𝜑𝑀 ∈ ℝ)
9822ltp1d 11835 . . . . . . . . . 10 (𝜑𝐼 < (𝐼 + 1))
9997, 22, 72, 15, 98lelttrd 11063 . . . . . . . . 9 (𝜑𝑀 < (𝐼 + 1))
10099adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < (𝐼 + 1))
101 elfzle1 13188 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → (𝐼 + 1) ≤ 𝑘)
102101adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ≤ 𝑘)
10394, 96, 95, 100, 102ltletrd 11065 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < 𝑘)
10494, 95, 103ltled 11053 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀𝑘)
10591zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℝ)
106 peano2rem 11218 . . . . . . . . . 10 (𝐽 ∈ ℝ → (𝐽 − 1) ∈ ℝ)
10725, 106syl 17 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ∈ ℝ)
108107adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
109 elfzle2 13189 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ≤ (𝐽 − 1))
110109adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝐽 − 1))
11125adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽 ∈ ℝ)
112111ltm1d 11837 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝐽)
11329adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽𝑁)
114108, 111, 105, 112, 113ltletrd 11065 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝑁)
11595, 108, 105, 110, 114lelttrd 11063 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 < 𝑁)
11695, 105, 115ltled 11053 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘𝑁)
11790, 91, 93, 104, 116elfzd 13176 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...𝑁))
118117, 8syldan 590 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ∈ ℝ)
119 peano2zm 12293 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
12091, 119syl 17 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℤ)
121120zred 12355 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℝ)
122 1red 10907 . . . . . . . . 9 (𝜑 → 1 ∈ ℝ)
12325, 26, 122, 29lesub1dd 11521 . . . . . . . 8 (𝜑 → (𝐽 − 1) ≤ (𝑁 − 1))
124123adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ≤ (𝑁 − 1))
12595, 108, 121, 110, 124letrd 11062 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝑁 − 1))
12690, 120, 93, 104, 125elfzd 13176 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
127 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
128 fzoval 13317 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
12921, 128syl 17 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
130129eqcomd 2744 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
131130adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
132127, 131eleqtrd 2841 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
133 fzofzp1 13412 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
134132, 133syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
135 simpl 482 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝜑)
136135, 134jca 511 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)))
137 eleq1 2826 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑘 + 1) ∈ (𝑀...𝑁)))
138137anbi2d 628 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁))))
139 fveq2 6756 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
140139eleq1d 2823 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
141138, 140imbi12d 344 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)))
142 eleq1 2826 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
143142anbi2d 628 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
144 fveq2 6756 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
145144eleq1d 2823 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
146143, 145imbi12d 344 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)))
147146, 8chvarvv 2003 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
148141, 147vtoclg 3495 . . . . . 6 ((𝑘 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ))
149134, 136, 148sylc 65 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
150126, 149syldan 590 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
151132, 57syldan 590 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
152126, 151syldan 590 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
153118, 150, 152ltled 11053 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
15465, 89, 153monoord 13681 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ≤ (𝐹𝐽))
15510, 42, 50, 59, 154ltletrd 11065 1 (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cz 12249  cuz 12511  ...cfz 13168  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by:  fourierdlem34  43572
  Copyright terms: Public domain W3C validator