MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pr Structured version   Visualization version   GIF version

Theorem hash2pr 14433
Description: A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2pr ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
Distinct variable group:   𝑉,𝑎,𝑏
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem hash2pr
StepHypRef Expression
1 2nn0 12490 . . . . 5 2 ∈ ℕ0
2 hashvnfin 14322 . . . . 5 ((𝑉𝑊 ∧ 2 ∈ ℕ0) → ((♯‘𝑉) = 2 → 𝑉 ∈ Fin))
31, 2mpan2 688 . . . 4 (𝑉𝑊 → ((♯‘𝑉) = 2 → 𝑉 ∈ Fin))
43imp 406 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ∈ Fin)
5 hash2 14367 . . . . . . . 8 (♯‘2o) = 2
65eqcomi 2735 . . . . . . 7 2 = (♯‘2o)
76a1i 11 . . . . . 6 (𝑉 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2737 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 ↔ (♯‘𝑉) = (♯‘2o)))
9 2onn 8640 . . . . . . . 8 2o ∈ ω
10 nnfi 9166 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . 7 2o ∈ Fin
12 hashen 14309 . . . . . . 7 ((𝑉 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑉) = (♯‘2o) ↔ 𝑉 ≈ 2o))
1311, 12mpan2 688 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘2o) ↔ 𝑉 ≈ 2o))
1413biimpd 228 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘2o) → 𝑉 ≈ 2o))
158, 14sylbid 239 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → 𝑉 ≈ 2o))
1615adantld 490 . . 3 (𝑉 ∈ Fin → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ≈ 2o))
174, 16mpcom 38 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ≈ 2o)
18 en2 9280 . 2 (𝑉 ≈ 2o → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
1917, 18syl 17 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  {cpr 4625   class class class wbr 5141  cfv 6536  ωcom 7851  2oc2o 8458  cen 8935  Fincfn 8938  2c2 12268  0cn0 12473  chash 14292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-oadd 8468  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-dju 9895  df-card 9933  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-n0 12474  df-z 12560  df-uz 12824  df-fz 13488  df-hash 14293
This theorem is referenced by:  hash2prde  14434  hashle2pr  14441  hash1to3  14455
  Copyright terms: Public domain W3C validator