MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hash2pr Structured version   Visualization version   GIF version

Theorem hash2pr 14508
Description: A set of size two is an unordered pair. (Contributed by Alexander van der Vekens, 8-Dec-2017.)
Assertion
Ref Expression
hash2pr ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
Distinct variable group:   𝑉,𝑎,𝑏
Allowed substitution hints:   𝑊(𝑎,𝑏)

Proof of Theorem hash2pr
StepHypRef Expression
1 2nn0 12543 . . . . 5 2 ∈ ℕ0
2 hashvnfin 14399 . . . . 5 ((𝑉𝑊 ∧ 2 ∈ ℕ0) → ((♯‘𝑉) = 2 → 𝑉 ∈ Fin))
31, 2mpan2 691 . . . 4 (𝑉𝑊 → ((♯‘𝑉) = 2 → 𝑉 ∈ Fin))
43imp 406 . . 3 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ∈ Fin)
5 hash2 14444 . . . . . . . 8 (♯‘2o) = 2
65eqcomi 2746 . . . . . . 7 2 = (♯‘2o)
76a1i 11 . . . . . 6 (𝑉 ∈ Fin → 2 = (♯‘2o))
87eqeq2d 2748 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 ↔ (♯‘𝑉) = (♯‘2o)))
9 2onn 8680 . . . . . . . 8 2o ∈ ω
10 nnfi 9207 . . . . . . . 8 (2o ∈ ω → 2o ∈ Fin)
119, 10ax-mp 5 . . . . . . 7 2o ∈ Fin
12 hashen 14386 . . . . . . 7 ((𝑉 ∈ Fin ∧ 2o ∈ Fin) → ((♯‘𝑉) = (♯‘2o) ↔ 𝑉 ≈ 2o))
1311, 12mpan2 691 . . . . . 6 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘2o) ↔ 𝑉 ≈ 2o))
1413biimpd 229 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) = (♯‘2o) → 𝑉 ≈ 2o))
158, 14sylbid 240 . . . 4 (𝑉 ∈ Fin → ((♯‘𝑉) = 2 → 𝑉 ≈ 2o))
1615adantld 490 . . 3 (𝑉 ∈ Fin → ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ≈ 2o))
174, 16mpcom 38 . 2 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → 𝑉 ≈ 2o)
18 en2 9315 . 2 (𝑉 ≈ 2o → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
1917, 18syl 17 1 ((𝑉𝑊 ∧ (♯‘𝑉) = 2) → ∃𝑎𝑏 𝑉 = {𝑎, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {cpr 4628   class class class wbr 5143  cfv 6561  ωcom 7887  2oc2o 8500  cen 8982  Fincfn 8985  2c2 12321  0cn0 12526  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  hash2prde  14509  hashle2pr  14516  hash1to3  14531
  Copyright terms: Public domain W3C validator