MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isepi2 Structured version   Visualization version   GIF version

Theorem isepi2 17759
Description: Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isepi.b 𝐵 = (Base‘𝐶)
isepi.h 𝐻 = (Hom ‘𝐶)
isepi.o · = (comp‘𝐶)
isepi.e 𝐸 = (Epi‘𝐶)
isepi.c (𝜑𝐶 ∈ Cat)
isepi.x (𝜑𝑋𝐵)
isepi.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isepi2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝐶,𝑔,𝑧   𝑔,,𝐻,𝑧   · ,𝑔,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝐹,,𝑧   𝜑,𝑔,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝜑()   𝐵()   𝐶()   𝐸(𝑧,𝑔,)

Proof of Theorem isepi2
StepHypRef Expression
1 isepi.b . . 3 𝐵 = (Base‘𝐶)
2 isepi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isepi.o . . 3 · = (comp‘𝐶)
4 isepi.e . . 3 𝐸 = (Epi‘𝐶)
5 isepi.c . . 3 (𝜑𝐶 ∈ Cat)
6 isepi.x . . 3 (𝜑𝑋𝐵)
7 isepi.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7isepi 17758 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
95ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ Cat)
106ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑋𝐵)
117ad2antrr 726 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑌𝐵)
12 simprl 770 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑧𝐵)
13 simplr 768 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐹 ∈ (𝑋𝐻𝑌))
14 simprr 772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 17702 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1615anassrs 467 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑌𝐻𝑧)) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1716ralrimiva 3133 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
18 eqid 2736 . . . . . . . 8 (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))
1918fmpt 7105 . . . . . . 7 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ↔ (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧))
20 df-f1 6541 . . . . . . . 8 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) ∧ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2120baib 535 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2219, 21sylbi 217 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
23 oveq1 7417 . . . . . . . 8 (𝑔 = → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹))
2418, 23f1mpt 7259 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ∧ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2524baib 535 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2622, 25bitr3d 281 . . . . 5 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2827ralbidva 3162 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2928pm5.32da 579 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
308, 29bitrd 279 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  cop 4612  cmpt 5206  ccnv 5658  Fun wfun 6530  wf 6532  1-1wf1 6533  cfv 6536  (class class class)co 7410  Basecbs 17233  Hom chom 17287  compcco 17288  Catccat 17681  Epicepi 17747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-hom 17300  df-cco 17301  df-cat 17685  df-cid 17686  df-oppc 17729  df-mon 17748  df-epi 17749
This theorem is referenced by:  setcepi  18106  idepi  48963  thincepi  49287  grptcepi  49438
  Copyright terms: Public domain W3C validator