Proof of Theorem isepi2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | isepi.b | . . 3
⊢ 𝐵 = (Base‘𝐶) | 
| 2 |  | isepi.h | . . 3
⊢ 𝐻 = (Hom ‘𝐶) | 
| 3 |  | isepi.o | . . 3
⊢  · =
(comp‘𝐶) | 
| 4 |  | isepi.e | . . 3
⊢ 𝐸 = (Epi‘𝐶) | 
| 5 |  | isepi.c | . . 3
⊢ (𝜑 → 𝐶 ∈ Cat) | 
| 6 |  | isepi.x | . . 3
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 7 |  | isepi.y | . . 3
⊢ (𝜑 → 𝑌 ∈ 𝐵) | 
| 8 | 1, 2, 3, 4, 5, 6, 7 | isepi 17784 | . 2
⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))))) | 
| 9 | 5 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ Cat) | 
| 10 | 6 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝑋 ∈ 𝐵) | 
| 11 | 7 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝑌 ∈ 𝐵) | 
| 12 |  | simprl 771 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝑧 ∈ 𝐵) | 
| 13 |  | simplr 769 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝐹 ∈ (𝑋𝐻𝑌)) | 
| 14 |  | simprr 773 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧)) | 
| 15 | 1, 2, 3, 9, 10, 11, 12, 13, 14 | catcocl 17728 | . . . . . . 7
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧 ∈ 𝐵 ∧ 𝑔 ∈ (𝑌𝐻𝑧))) → (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧)) | 
| 16 | 15 | anassrs 467 | . . . . . 6
⊢ ((((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑔 ∈ (𝑌𝐻𝑧)) → (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧)) | 
| 17 | 16 | ralrimiva 3146 | . . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧 ∈ 𝐵) → ∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧)) | 
| 18 |  | eqid 2737 | . . . . . . . 8
⊢ (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) | 
| 19 | 18 | fmpt 7130 | . . . . . . 7
⊢
(∀𝑔 ∈
(𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ↔ (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧)) | 
| 20 |  | df-f1 6566 | . . . . . . . 8
⊢ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) ∧ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) | 
| 21 | 20 | baib 535 | . . . . . . 7
⊢ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) | 
| 22 | 19, 21 | sylbi 217 | . . . . . 6
⊢
(∀𝑔 ∈
(𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)))) | 
| 23 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑔 = ℎ → (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹)) | 
| 24 | 18, 23 | f1mpt 7281 | . . . . . . 7
⊢ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ∧ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ))) | 
| 25 | 24 | baib 535 | . . . . . 6
⊢
(∀𝑔 ∈
(𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ))) | 
| 26 | 22, 25 | bitr3d 281 | . . . . 5
⊢
(∀𝑔 ∈
(𝑌𝐻𝑧)(𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → (Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ))) | 
| 27 | 17, 26 | syl 17 | . . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧 ∈ 𝐵) → (Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ))) | 
| 28 | 27 | ralbidva 3176 | . . 3
⊢ ((𝜑 ∧ 𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹)) ↔ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ))) | 
| 29 | 28 | pm5.32da 579 | . 2
⊢ (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 Fun ◡(𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ)))) | 
| 30 | 8, 29 | bitrd 279 | 1
⊢ (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧 ∈ 𝐵 ∀𝑔 ∈ (𝑌𝐻𝑧)∀ℎ ∈ (𝑌𝐻𝑧)((𝑔(〈𝑋, 𝑌〉 · 𝑧)𝐹) = (ℎ(〈𝑋, 𝑌〉 · 𝑧)𝐹) → 𝑔 = ℎ)))) |