Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isepi2 Structured version   Visualization version   GIF version

Theorem isepi2 17002
 Description: Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isepi.b 𝐵 = (Base‘𝐶)
isepi.h 𝐻 = (Hom ‘𝐶)
isepi.o · = (comp‘𝐶)
isepi.e 𝐸 = (Epi‘𝐶)
isepi.c (𝜑𝐶 ∈ Cat)
isepi.x (𝜑𝑋𝐵)
isepi.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isepi2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝐶,𝑔,𝑧   𝑔,,𝐻,𝑧   · ,𝑔,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝐹,,𝑧   𝜑,𝑔,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝜑()   𝐵()   𝐶()   𝐸(𝑧,𝑔,)

Proof of Theorem isepi2
StepHypRef Expression
1 isepi.b . . 3 𝐵 = (Base‘𝐶)
2 isepi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isepi.o . . 3 · = (comp‘𝐶)
4 isepi.e . . 3 𝐸 = (Epi‘𝐶)
5 isepi.c . . 3 (𝜑𝐶 ∈ Cat)
6 isepi.x . . 3 (𝜑𝑋𝐵)
7 isepi.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7isepi 17001 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
95ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ Cat)
106ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑋𝐵)
117ad2antrr 725 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑌𝐵)
12 simprl 770 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑧𝐵)
13 simplr 768 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐹 ∈ (𝑋𝐻𝑌))
14 simprr 772 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 16947 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1615anassrs 471 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑌𝐻𝑧)) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1716ralrimiva 3174 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
18 eqid 2822 . . . . . . . 8 (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))
1918fmpt 6856 . . . . . . 7 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ↔ (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧))
20 df-f1 6339 . . . . . . . 8 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) ∧ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2120baib 539 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2219, 21sylbi 220 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
23 oveq1 7147 . . . . . . . 8 (𝑔 = → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹))
2418, 23f1mpt 7002 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ∧ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2524baib 539 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2622, 25bitr3d 284 . . . . 5 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2827ralbidva 3186 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2928pm5.32da 582 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
308, 29bitrd 282 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2114  ∀wral 3130  ⟨cop 4545   ↦ cmpt 5122  ◡ccnv 5531  Fun wfun 6328  ⟶wf 6330  –1-1→wf1 6331  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  Hom chom 16567  compcco 16568  Catccat 16926  Epicepi 16990 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-hom 16580  df-cco 16581  df-cat 16930  df-cid 16931  df-oppc 16973  df-mon 16991  df-epi 16992 This theorem is referenced by:  setcepi  17339
 Copyright terms: Public domain W3C validator