MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isepi2 Structured version   Visualization version   GIF version

Theorem isepi2 17011
Description: Write out the epimorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
isepi.b 𝐵 = (Base‘𝐶)
isepi.h 𝐻 = (Hom ‘𝐶)
isepi.o · = (comp‘𝐶)
isepi.e 𝐸 = (Epi‘𝐶)
isepi.c (𝜑𝐶 ∈ Cat)
isepi.x (𝜑𝑋𝐵)
isepi.y (𝜑𝑌𝐵)
Assertion
Ref Expression
isepi2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
Distinct variable groups:   𝑧,𝑔,𝐵   𝐶,𝑔,𝑧   𝑔,,𝐻,𝑧   · ,𝑔,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝐹,,𝑧   𝜑,𝑔,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝜑()   𝐵()   𝐶()   𝐸(𝑧,𝑔,)

Proof of Theorem isepi2
StepHypRef Expression
1 isepi.b . . 3 𝐵 = (Base‘𝐶)
2 isepi.h . . 3 𝐻 = (Hom ‘𝐶)
3 isepi.o . . 3 · = (comp‘𝐶)
4 isepi.e . . 3 𝐸 = (Epi‘𝐶)
5 isepi.c . . 3 (𝜑𝐶 ∈ Cat)
6 isepi.x . . 3 (𝜑𝑋𝐵)
7 isepi.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7isepi 17010 . 2 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)))))
95ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐶 ∈ Cat)
106ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑋𝐵)
117ad2antrr 724 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑌𝐵)
12 simprl 769 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑧𝐵)
13 simplr 767 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝐹 ∈ (𝑋𝐻𝑌))
14 simprr 771 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → 𝑔 ∈ (𝑌𝐻𝑧))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 16956 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧))) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1615anassrs 470 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑌𝐻𝑧)) → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
1716ralrimiva 3182 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧))
18 eqid 2821 . . . . . . . 8 (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) = (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))
1918fmpt 6874 . . . . . . 7 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ↔ (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧))
20 df-f1 6360 . . . . . . . 8 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) ∧ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2120baib 538 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)⟶(𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
2219, 21sylbi 219 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))))
23 oveq1 7163 . . . . . . . 8 (𝑔 = → (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹))
2418, 23f1mpt 7019 . . . . . . 7 ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) ∧ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2524baib 538 . . . . . 6 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → ((𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)):(𝑌𝐻𝑧)–1-1→(𝑋𝐻𝑧) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2622, 25bitr3d 283 . . . . 5 (∀𝑔 ∈ (𝑌𝐻𝑧)(𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) ∈ (𝑋𝐻𝑧) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2827ralbidva 3196 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = )))
2928pm5.32da 581 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑌𝐻𝑧) ↦ (𝑔(⟨𝑋, 𝑌· 𝑧)𝐹))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
308, 29bitrd 281 1 (𝜑 → (𝐹 ∈ (𝑋𝐸𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑌𝐻𝑧)∀ ∈ (𝑌𝐻𝑧)((𝑔(⟨𝑋, 𝑌· 𝑧)𝐹) = ((⟨𝑋, 𝑌· 𝑧)𝐹) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  cop 4573  cmpt 5146  ccnv 5554  Fun wfun 6349  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  Basecbs 16483  Hom chom 16576  compcco 16577  Catccat 16935  Epicepi 16999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-hom 16589  df-cco 16590  df-cat 16939  df-cid 16940  df-oppc 16982  df-mon 17000  df-epi 17001
This theorem is referenced by:  setcepi  17348
  Copyright terms: Public domain W3C validator