| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onadju | Structured version Visualization version GIF version | ||
| Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.) |
| Ref | Expression |
|---|---|
| onadju | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 8998 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
| 2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ≈ 𝐴) |
| 3 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
| 4 | eqid 2735 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
| 5 | 4 | oacomf1olem 8576 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
| 6 | 5 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
| 7 | 6 | simpld 494 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
| 8 | f1oeng 8985 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) | |
| 9 | 3, 7, 8 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
| 10 | incom 4184 | . . . . 5 ⊢ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) | |
| 11 | 6 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅) |
| 12 | 10, 11 | eqtrid 2782 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) |
| 13 | djuenun 10185 | . . . 4 ⊢ ((𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
| 14 | 2, 9, 12, 13 | syl3anc 1373 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) |
| 15 | oarec 8574 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
| 16 | 14, 15 | breqtrrd 5147 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵)) |
| 17 | 16 | ensymd 9019 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 Oncon0 6352 –1-1-onto→wf1o 6530 (class class class)co 7405 +o coa 8477 ≈ cen 8956 ⊔ cdju 9912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dju 9915 |
| This theorem is referenced by: cardadju 10209 nnadjuALT 10213 tr3dom 43552 |
| Copyright terms: Public domain | W3C validator |