![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > onadju | Structured version Visualization version GIF version |
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.) |
Ref | Expression |
---|---|
onadju | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 9044 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ≈ 𝐴) |
3 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
4 | eqid 2740 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
5 | 4 | oacomf1olem 8620 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
6 | 5 | ancoms 458 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
7 | 6 | simpld 494 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
8 | f1oeng 9031 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) | |
9 | 3, 7, 8 | syl2anc 583 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
10 | incom 4230 | . . . . 5 ⊢ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) | |
11 | 6 | simprd 495 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅) |
12 | 10, 11 | eqtrid 2792 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) |
13 | djuenun 10240 | . . . 4 ⊢ ((𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
14 | 2, 9, 12, 13 | syl3anc 1371 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) |
15 | oarec 8618 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
16 | 14, 15 | breqtrrd 5194 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵)) |
17 | 16 | ensymd 9065 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∅c0 4352 class class class wbr 5166 ↦ cmpt 5249 ran crn 5701 Oncon0 6395 –1-1-onto→wf1o 6572 (class class class)co 7448 +o coa 8519 ≈ cen 9000 ⊔ cdju 9967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dju 9970 |
This theorem is referenced by: cardadju 10264 nnadjuALT 10268 tr3dom 43490 |
Copyright terms: Public domain | W3C validator |