MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onadju Structured version   Visualization version   GIF version

Theorem onadju 10210
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.)
Assertion
Ref Expression
onadju ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 +o 𝐡) β‰ˆ (𝐴 βŠ” 𝐡))

Proof of Theorem onadju
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 enrefg 8998 . . . . 5 (𝐴 ∈ On β†’ 𝐴 β‰ˆ 𝐴)
21adantr 480 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐴 β‰ˆ 𝐴)
3 simpr 484 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐡 ∈ On)
4 eqid 2727 . . . . . . . 8 (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) = (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))
54oacomf1olem 8578 . . . . . . 7 ((𝐡 ∈ On ∧ 𝐴 ∈ On) β†’ ((π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∧ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…))
65ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ ((π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∧ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…))
76simpld 494 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
8 f1oeng 8985 . . . . 5 ((𝐡 ∈ On ∧ (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)):𝐡–1-1-ontoβ†’ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) β†’ 𝐡 β‰ˆ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
93, 7, 8syl2anc 583 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ 𝐡 β‰ˆ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)))
10 incom 4197 . . . . 5 (𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴)
116simprd 495 . . . . 5 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∩ 𝐴) = βˆ…)
1210, 11eqtrid 2779 . . . 4 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = βˆ…)
13 djuenun 10187 . . . 4 ((𝐴 β‰ˆ 𝐴 ∧ 𝐡 β‰ˆ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯)) ∧ (𝐴 ∩ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))) = βˆ…) β†’ (𝐴 βŠ” 𝐡) β‰ˆ (𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))))
142, 9, 12, 13syl3anc 1369 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 βŠ” 𝐡) β‰ˆ (𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))))
15 oarec 8576 . . 3 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 +o 𝐡) = (𝐴 βˆͺ ran (π‘₯ ∈ 𝐡 ↦ (𝐴 +o π‘₯))))
1614, 15breqtrrd 5170 . 2 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 βŠ” 𝐡) β‰ˆ (𝐴 +o 𝐡))
1716ensymd 9019 1 ((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 +o 𝐡) β‰ˆ (𝐴 βŠ” 𝐡))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   βˆͺ cun 3942   ∩ cin 3943  βˆ…c0 4318   class class class wbr 5142   ↦ cmpt 5225  ran crn 5673  Oncon0 6363  β€“1-1-ontoβ†’wf1o 6541  (class class class)co 7414   +o coa 8477   β‰ˆ cen 8954   βŠ” cdju 9915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8958  df-dju 9918
This theorem is referenced by:  cardadju  10211  nnadjuALT  10215  tr3dom  42930
  Copyright terms: Public domain W3C validator