MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onadju Structured version   Visualization version   GIF version

Theorem onadju 10147
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.)
Assertion
Ref Expression
onadju ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴𝐵))

Proof of Theorem onadju
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 enrefg 8955 . . . . 5 (𝐴 ∈ On → 𝐴𝐴)
21adantr 480 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴𝐴)
3 simpr 484 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
4 eqid 2729 . . . . . . . 8 (𝑥𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
54oacomf1olem 8528 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
65ancoms 458 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅))
76simpld 494 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
8 f1oeng 8942 . . . . 5 ((𝐵 ∈ On ∧ (𝑥𝐵 ↦ (𝐴 +o 𝑥)):𝐵1-1-onto→ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
93, 7, 8syl2anc 584 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)))
10 incom 4172 . . . . 5 (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴)
116simprd 495 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)
1210, 11eqtrid 2776 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅)
13 djuenun 10124 . . . 4 ((𝐴𝐴𝐵 ≈ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥)) ∧ (𝐴 ∩ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))) = ∅) → (𝐴𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
142, 9, 12, 13syl3anc 1373 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ≈ (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
15 oarec 8526 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥𝐵 ↦ (𝐴 +o 𝑥))))
1614, 15breqtrrd 5135 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵) ≈ (𝐴 +o 𝐵))
1716ensymd 8976 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cun 3912  cin 3913  c0 4296   class class class wbr 5107  cmpt 5188  ran crn 5639  Oncon0 6332  1-1-ontowf1o 6510  (class class class)co 7387   +o coa 8431  cen 8915  cdju 9851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dju 9854
This theorem is referenced by:  cardadju  10148  nnadjuALT  10152  tr3dom  43517
  Copyright terms: Public domain W3C validator