Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > onadju | Structured version Visualization version GIF version |
Description: The cardinal and ordinal sums are always equinumerous. (Contributed by Mario Carneiro, 6-Feb-2013.) (Revised by Jim Kingdon, 7-Sep-2023.) |
Ref | Expression |
---|---|
onadju | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 8772 | . . . . 5 ⊢ (𝐴 ∈ On → 𝐴 ≈ 𝐴) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ≈ 𝐴) |
3 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
4 | eqid 2738 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) | |
5 | 4 | oacomf1olem 8395 | . . . . . . 7 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
6 | 5 | ancoms 459 | . . . . . 6 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅)) |
7 | 6 | simpld 495 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
8 | f1oeng 8759 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)):𝐵–1-1-onto→ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) | |
9 | 3, 7, 8 | syl2anc 584 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) |
10 | incom 4135 | . . . . 5 ⊢ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) | |
11 | 6 | simprd 496 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∩ 𝐴) = ∅) |
12 | 10, 11 | eqtrid 2790 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) |
13 | djuenun 9926 | . . . 4 ⊢ ((𝐴 ≈ 𝐴 ∧ 𝐵 ≈ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ∧ (𝐴 ∩ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥))) = ∅) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
14 | 2, 9, 12, 13 | syl3anc 1370 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) |
15 | oarec 8393 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) = (𝐴 ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)))) | |
16 | 14, 15 | breqtrrd 5102 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊔ 𝐵) ≈ (𝐴 +o 𝐵)) |
17 | 16 | ensymd 8791 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +o 𝐵) ≈ (𝐴 ⊔ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 ran crn 5590 Oncon0 6266 –1-1-onto→wf1o 6432 (class class class)co 7275 +o coa 8294 ≈ cen 8730 ⊔ cdju 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dju 9659 |
This theorem is referenced by: cardadju 9950 nnadjuALT 9954 tr3dom 41135 |
Copyright terms: Public domain | W3C validator |