| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0reval | Structured version Visualization version GIF version | ||
| Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| sge0reval.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| sge0reval.f | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
| Ref | Expression |
|---|---|
| sge0reval | ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sge0reval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | sge0reval.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
| 3 | 2 | fge0icoicc 46336 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) |
| 4 | 1, 3 | sge0vald 46340 | . 2 ⊢ (𝜑 → (Σ^‘𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < ))) |
| 5 | 2 | fge0npnf 46338 | . . 3 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
| 6 | 5 | iffalsed 4495 | . 2 ⊢ (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) |
| 7 | 4, 6 | eqtrd 2764 | 1 ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦 ∈ 𝑥 (𝐹‘𝑦)), ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3910 ifcif 4484 𝒫 cpw 4559 ↦ cmpt 5183 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 supcsup 9367 0cc0 11044 +∞cpnf 11181 ℝ*cxr 11183 < clt 11184 [,)cico 13284 Σcsu 15628 Σ^csumge0 46333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ico 13288 df-icc 13289 df-seq 13943 df-sum 15629 df-sumge0 46334 |
| This theorem is referenced by: sge0z 46346 sge00 46347 fsumlesge0 46348 sge0revalmpt 46349 sge0sn 46350 sge0tsms 46351 sge0cl 46352 sge0fsum 46358 sge0supre 46360 sge0sup 46362 sge0less 46363 sge0resplit 46377 sge0split 46380 |
| Copyright terms: Public domain | W3C validator |