Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0reval Structured version   Visualization version   GIF version

Theorem sge0reval 45387
Description: Value of the sum of nonnegative extended reals, when all terms in the sum are reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0reval.x (𝜑𝑋𝑉)
sge0reval.f (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
sge0reval (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem sge0reval
StepHypRef Expression
1 sge0reval.x . . 3 (𝜑𝑋𝑉)
2 sge0reval.f . . . 4 (𝜑𝐹:𝑋⟶(0[,)+∞))
32fge0icoicc 45380 . . 3 (𝜑𝐹:𝑋⟶(0[,]+∞))
41, 3sge0vald 45384 . 2 (𝜑 → (Σ^𝐹) = if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )))
52fge0npnf 45382 . . 3 (𝜑 → ¬ +∞ ∈ ran 𝐹)
65iffalsed 4539 . 2 (𝜑 → if(+∞ ∈ ran 𝐹, +∞, sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < )) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
74, 6eqtrd 2771 1 (𝜑 → (Σ^𝐹) = sup(ran (𝑥 ∈ (𝒫 𝑋 ∩ Fin) ↦ Σ𝑦𝑥 (𝐹𝑦)), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cin 3947  ifcif 4528  𝒫 cpw 4602  cmpt 5231  ran crn 5677  wf 6539  cfv 6543  (class class class)co 7412  Fincfn 8943  supcsup 9439  0cc0 11114  +∞cpnf 11250  *cxr 11252   < clt 11253  [,)cico 13331  Σcsu 15637  Σ^csumge0 45377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-sup 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-ico 13335  df-icc 13336  df-fz 13490  df-seq 13972  df-sum 15638  df-sumge0 45378
This theorem is referenced by:  sge0z  45390  sge00  45391  fsumlesge0  45392  sge0revalmpt  45393  sge0sn  45394  sge0tsms  45395  sge0cl  45396  sge0fsum  45402  sge0supre  45404  sge0sup  45406  sge0less  45407  sge0resplit  45421  sge0split  45424
  Copyright terms: Public domain W3C validator