Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem17 Structured version   Visualization version   GIF version

Theorem fourierdlem17 44830
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem17.a (𝜑𝐴 ∈ ℝ)
fourierdlem17.b (𝜑𝐵 ∈ ℝ)
fourierdlem17.altb (𝜑𝐴 < 𝐵)
fourierdlem17.l 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
Assertion
Ref Expression
fourierdlem17 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐿(𝑥)

Proof of Theorem fourierdlem17
StepHypRef Expression
1 fourierdlem17.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem17.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31leidd 11779 . . . . 5 (𝜑𝐴𝐴)
4 fourierdlem17.altb . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11361 . . . . 5 (𝜑𝐴𝐵)
61, 2, 1, 3, 5eliccd 44207 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
76ad2antrr 724 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8 iocssicc 13413 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
98sseli 3978 . . . 4 (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
109ad2antlr 725 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
117, 10ifclda 4563 . 2 ((𝜑𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵))
12 fourierdlem17.l . 2 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
1311, 12fmptd 7113 1 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1541  wcel 2106  ifcif 4528   class class class wbr 5148  cmpt 5231  wf 6539  (class class class)co 7408  cr 11108   < clt 11247  (,]cioc 13324  [,]cicc 13326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioc 13328  df-icc 13330
This theorem is referenced by:  fourierdlem79  44891  fourierdlem89  44901  fourierdlem90  44902  fourierdlem91  44903
  Copyright terms: Public domain W3C validator