| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem17 | Structured version Visualization version GIF version | ||
| Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem17.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem17.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem17.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem17.l | ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
| Ref | Expression |
|---|---|
| fourierdlem17 | ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem17.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | fourierdlem17.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1 | leidd 11683 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 4 | fourierdlem17.altb | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 5 | 1, 2, 4 | ltled 11261 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 6 | 1, 2, 1, 3, 5 | eliccd 45552 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 8 | iocssicc 13337 | . . . . 5 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | |
| 9 | 8 | sseli 3925 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 11 | 7, 10 | ifclda 4508 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵)) |
| 12 | fourierdlem17.l | . 2 ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | |
| 13 | 11, 12 | fmptd 7047 | 1 ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4472 class class class wbr 5089 ↦ cmpt 5170 ⟶wf 6477 (class class class)co 7346 ℝcr 11005 < clt 11146 (,]cioc 13246 [,]cicc 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioc 13250 df-icc 13252 |
| This theorem is referenced by: fourierdlem79 46231 fourierdlem89 46241 fourierdlem90 46242 fourierdlem91 46243 |
| Copyright terms: Public domain | W3C validator |