Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem17 Structured version   Visualization version   GIF version

Theorem fourierdlem17 46129
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem17.a (𝜑𝐴 ∈ ℝ)
fourierdlem17.b (𝜑𝐵 ∈ ℝ)
fourierdlem17.altb (𝜑𝐴 < 𝐵)
fourierdlem17.l 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
Assertion
Ref Expression
fourierdlem17 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐿(𝑥)

Proof of Theorem fourierdlem17
StepHypRef Expression
1 fourierdlem17.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem17.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31leidd 11751 . . . . 5 (𝜑𝐴𝐴)
4 fourierdlem17.altb . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11329 . . . . 5 (𝜑𝐴𝐵)
61, 2, 1, 3, 5eliccd 45509 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
76ad2antrr 726 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8 iocssicc 13405 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
98sseli 3945 . . . 4 (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
109ad2antlr 727 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
117, 10ifclda 4527 . 2 ((𝜑𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵))
12 fourierdlem17.l . 2 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
1311, 12fmptd 7089 1 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  ifcif 4491   class class class wbr 5110  cmpt 5191  wf 6510  (class class class)co 7390  cr 11074   < clt 11215  (,]cioc 13314  [,]cicc 13316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioc 13318  df-icc 13320
This theorem is referenced by:  fourierdlem79  46190  fourierdlem89  46200  fourierdlem90  46201  fourierdlem91  46202
  Copyright terms: Public domain W3C validator