| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem17 | Structured version Visualization version GIF version | ||
| Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem17.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| fourierdlem17.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| fourierdlem17.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
| fourierdlem17.l | ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
| Ref | Expression |
|---|---|
| fourierdlem17 | ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fourierdlem17.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | fourierdlem17.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1 | leidd 11686 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
| 4 | fourierdlem17.altb | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
| 5 | 1, 2, 4 | ltled 11264 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 6 | 1, 2, 1, 3, 5 | eliccd 45485 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
| 7 | 6 | ad2antrr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 8 | iocssicc 13340 | . . . . 5 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | |
| 9 | 8 | sseli 3931 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 10 | 9 | ad2antlr 727 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
| 11 | 7, 10 | ifclda 4512 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵)) |
| 12 | fourierdlem17.l | . 2 ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | |
| 13 | 11, 12 | fmptd 7048 | 1 ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4476 class class class wbr 5092 ↦ cmpt 5173 ⟶wf 6478 (class class class)co 7349 ℝcr 11008 < clt 11149 (,]cioc 13249 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioc 13253 df-icc 13255 |
| This theorem is referenced by: fourierdlem79 46166 fourierdlem89 46176 fourierdlem90 46177 fourierdlem91 46178 |
| Copyright terms: Public domain | W3C validator |