![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem17 | Structured version Visualization version GIF version |
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem17.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem17.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem17.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem17.l | ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
Ref | Expression |
---|---|
fourierdlem17 | ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem17.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | fourierdlem17.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1 | leidd 11726 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
4 | fourierdlem17.altb | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 4 | ltled 11308 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | 1, 2, 1, 3, 5 | eliccd 43828 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
7 | 6 | ad2antrr 725 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
8 | iocssicc 13360 | . . . . 5 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | |
9 | 8 | sseli 3941 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
10 | 9 | ad2antlr 726 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
11 | 7, 10 | ifclda 4522 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵)) |
12 | fourierdlem17.l | . 2 ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | |
13 | 11, 12 | fmptd 7063 | 1 ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ifcif 4487 class class class wbr 5106 ↦ cmpt 5189 ⟶wf 6493 (class class class)co 7358 ℝcr 11055 < clt 11194 (,]cioc 13271 [,]cicc 13273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-pre-lttri 11130 ax-pre-lttrn 11131 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-ioc 13275 df-icc 13277 |
This theorem is referenced by: fourierdlem79 44512 fourierdlem89 44522 fourierdlem90 44523 fourierdlem91 44524 |
Copyright terms: Public domain | W3C validator |