Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem17 | Structured version Visualization version GIF version |
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem17.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
fourierdlem17.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
fourierdlem17.altb | ⊢ (𝜑 → 𝐴 < 𝐵) |
fourierdlem17.l | ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) |
Ref | Expression |
---|---|
fourierdlem17 | ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fourierdlem17.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | fourierdlem17.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 1 | leidd 11471 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐴) |
4 | fourierdlem17.altb | . . . . . 6 ⊢ (𝜑 → 𝐴 < 𝐵) | |
5 | 1, 2, 4 | ltled 11053 | . . . . 5 ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
6 | 1, 2, 1, 3, 5 | eliccd 42932 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴[,]𝐵)) |
7 | 6 | ad2antrr 722 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) |
8 | iocssicc 13098 | . . . . 5 ⊢ (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵) | |
9 | 8 | sseli 3913 | . . . 4 ⊢ (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
10 | 9 | ad2antlr 723 | . . 3 ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
11 | 7, 10 | ifclda 4491 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵)) |
12 | fourierdlem17.l | . 2 ⊢ 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥)) | |
13 | 11, 12 | fmptd 6970 | 1 ⊢ (𝜑 → 𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 ↦ cmpt 5153 ⟶wf 6414 (class class class)co 7255 ℝcr 10801 < clt 10940 (,]cioc 13009 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioc 13013 df-icc 13015 |
This theorem is referenced by: fourierdlem79 43616 fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 |
Copyright terms: Public domain | W3C validator |