Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem17 Structured version   Visualization version   GIF version

Theorem fourierdlem17 46101
Description: The defined 𝐿 is actually a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem17.a (𝜑𝐴 ∈ ℝ)
fourierdlem17.b (𝜑𝐵 ∈ ℝ)
fourierdlem17.altb (𝜑𝐴 < 𝐵)
fourierdlem17.l 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
Assertion
Ref Expression
fourierdlem17 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝐿(𝑥)

Proof of Theorem fourierdlem17
StepHypRef Expression
1 fourierdlem17.a . . . . 5 (𝜑𝐴 ∈ ℝ)
2 fourierdlem17.b . . . . 5 (𝜑𝐵 ∈ ℝ)
31leidd 11801 . . . . 5 (𝜑𝐴𝐴)
4 fourierdlem17.altb . . . . . 6 (𝜑𝐴 < 𝐵)
51, 2, 4ltled 11381 . . . . 5 (𝜑𝐴𝐵)
61, 2, 1, 3, 5eliccd 45481 . . . 4 (𝜑𝐴 ∈ (𝐴[,]𝐵))
76ad2antrr 726 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ 𝑥 = 𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
8 iocssicc 13452 . . . . 5 (𝐴(,]𝐵) ⊆ (𝐴[,]𝐵)
98sseli 3954 . . . 4 (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
109ad2antlr 727 . . 3 (((𝜑𝑥 ∈ (𝐴(,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵))
117, 10ifclda 4536 . 2 ((𝜑𝑥 ∈ (𝐴(,]𝐵)) → if(𝑥 = 𝐵, 𝐴, 𝑥) ∈ (𝐴[,]𝐵))
12 fourierdlem17.l . 2 𝐿 = (𝑥 ∈ (𝐴(,]𝐵) ↦ if(𝑥 = 𝐵, 𝐴, 𝑥))
1311, 12fmptd 7103 1 (𝜑𝐿:(𝐴(,]𝐵)⟶(𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  ifcif 4500   class class class wbr 5119  cmpt 5201  wf 6526  (class class class)co 7403  cr 11126   < clt 11267  (,]cioc 13361  [,]cicc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-ioc 13365  df-icc 13367
This theorem is referenced by:  fourierdlem79  46162  fourierdlem89  46172  fourierdlem90  46173  fourierdlem91  46174
  Copyright terms: Public domain W3C validator