Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem18 Structured version   Visualization version   GIF version

Theorem fourierdlem18 46046
Description: The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem18.n (𝜑𝑁 ∈ ℝ)
fourierdlem18.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
Assertion
Ref Expression
fourierdlem18 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Distinct variable groups:   𝑁,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑆(𝑠)

Proof of Theorem fourierdlem18
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resincncf 45796 . . . . 5 (sin ↾ ℝ) ∈ (ℝ–cn→ℝ)
2 cncff 24938 . . . . 5 ((sin ↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾ ℝ):ℝ⟶ℝ)
31, 2ax-mp 5 . . . 4 (sin ↾ ℝ):ℝ⟶ℝ
4 fourierdlem18.n . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
5 halfre 12507 . . . . . . . . 9 (1 / 2) ∈ ℝ
65a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
74, 6readdcld 11319 . . . . . . 7 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
87adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
9 pire 26518 . . . . . . . . . 10 π ∈ ℝ
109renegcli 11597 . . . . . . . . 9 -π ∈ ℝ
11 iccssre 13489 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
1210, 9, 11mp2an 691 . . . . . . . 8 (-π[,]π) ⊆ ℝ
1312sseli 4004 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
1413adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
158, 14remulcld 11320 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
16 eqid 2740 . . . . 5 (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))
1715, 16fmptd 7148 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ)
18 fcompt 7167 . . . 4 (((sin ↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
193, 17, 18sylancr 586 . . 3 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
20 eqidd 2741 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)))
21 oveq2 7456 . . . . . . . 8 (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
2221adantl 481 . . . . . . 7 (((𝜑𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
23 simpr 484 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ (-π[,]π))
247adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
2512, 23sselid 4006 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
2624, 25remulcld 11320 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ)
2720, 22, 23, 26fvmptd 7036 . . . . . 6 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥))
2827fveq2d 6924 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)))
2928mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))))
30 fvres 6939 . . . . . 6 (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3126, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3231mpteq2dva 5266 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))))
33 oveq2 7456 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠))
3433fveq2d 6924 . . . . . 6 (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3534cbvmptv 5279 . . . . 5 (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3635a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
3729, 32, 363eqtrd 2784 . . 3 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
38 fourierdlem18.s . . . . 5 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3938eqcomi 2749 . . . 4 (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆
4039a1i 11 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆)
4119, 37, 403eqtrrd 2785 . 2 (𝜑𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))))
42 ax-resscn 11241 . . . . . . . 8 ℝ ⊆ ℂ
4312, 42sstri 4018 . . . . . . 7 (-π[,]π) ⊆ ℂ
4443a1i 11 . . . . . 6 (𝜑 → (-π[,]π) ⊆ ℂ)
454recnd 11318 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
46 halfcn 12508 . . . . . . . 8 (1 / 2) ∈ ℂ
4746a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
4845, 47addcld 11309 . . . . . 6 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
49 ssid 4031 . . . . . . 7 ℂ ⊆ ℂ
5049a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
5144, 48, 50constcncfg 45793 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈ ((-π[,]π)–cn→ℂ))
5244, 50idcncfg 45794 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈ ((-π[,]π)–cn→ℂ))
5351, 52mulcncf 25499 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℂ))
54 ssid 4031 . . . . 5 (-π[,]π) ⊆ (-π[,]π)
5554a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ (-π[,]π))
5642a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
5716, 53, 55, 56, 15cncfmptssg 45792 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℝ))
581a1i 11 . . 3 (𝜑 → (sin ↾ ℝ) ∈ (ℝ–cn→ℝ))
5957, 58cncfco 24952 . 2 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) ∈ ((-π[,]π)–cn→ℝ))
6041, 59eqeltrd 2844 1 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wss 3976  cmpt 5249  cres 5702  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  1c1 11185   + caddc 11187   · cmul 11189  -cneg 11521   / cdiv 11947  2c2 12348  [,]cicc 13410  sincsin 16111  πcpi 16114  cnccncf 24921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  fourierdlem85  46112  fourierdlem88  46115
  Copyright terms: Public domain W3C validator