| Step | Hyp | Ref
| Expression |
| 1 | | resincncf 45890 |
. . . . 5
⊢ (sin
↾ ℝ) ∈ (ℝ–cn→ℝ) |
| 2 | | cncff 24919 |
. . . . 5
⊢ ((sin
↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾
ℝ):ℝ⟶ℝ) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ (sin
↾ ℝ):ℝ⟶ℝ |
| 4 | | fourierdlem18.n |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ ℝ) |
| 5 | | halfre 12480 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
| 6 | 5 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1 / 2) ∈
ℝ) |
| 7 | 4, 6 | readdcld 11290 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ) |
| 8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈
ℝ) |
| 9 | | pire 26500 |
. . . . . . . . . 10
⊢ π
∈ ℝ |
| 10 | 9 | renegcli 11570 |
. . . . . . . . 9
⊢ -π
∈ ℝ |
| 11 | | iccssre 13469 |
. . . . . . . . 9
⊢ ((-π
∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆
ℝ) |
| 12 | 10, 9, 11 | mp2an 692 |
. . . . . . . 8
⊢
(-π[,]π) ⊆ ℝ |
| 13 | 12 | sseli 3979 |
. . . . . . 7
⊢ (𝑠 ∈ (-π[,]π) →
𝑠 ∈
ℝ) |
| 14 | 13 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → 𝑠 ∈
ℝ) |
| 15 | 8, 14 | remulcld 11291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈
ℝ) |
| 16 | | eqid 2737 |
. . . . 5
⊢ (𝑠 ∈ (-π[,]π) ↦
((𝑁 + (1 / 2)) ·
𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) |
| 17 | 15, 16 | fmptd 7134 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) |
| 18 | | fcompt 7153 |
. . . 4
⊢ (((sin
↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) →
((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾
ℝ)‘((𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠))‘𝑥)))) |
| 19 | 3, 17, 18 | sylancr 587 |
. . 3
⊢ (𝜑 → ((sin ↾ ℝ)
∘ (𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠))) =
(𝑥 ∈ (-π[,]π)
↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)))) |
| 20 | | eqidd 2738 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦
((𝑁 + (1 / 2)) ·
𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) |
| 21 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥)) |
| 22 | 21 | adantl 481 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥)) |
| 23 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
(-π[,]π)) |
| 24 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈
ℝ) |
| 25 | 12, 23 | sselid 3981 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → 𝑥 ∈
ℝ) |
| 26 | 24, 25 | remulcld 11291 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈
ℝ) |
| 27 | 20, 22, 23, 26 | fvmptd 7023 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦
((𝑁 + (1 / 2)) ·
𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥)) |
| 28 | 27 | fveq2d 6910 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → ((sin ↾
ℝ)‘((𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) |
| 29 | 28 | mpteq2dva 5242 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾
ℝ)‘((𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾
ℝ)‘((𝑁 + (1 /
2)) · 𝑥)))) |
| 30 | | fvres 6925 |
. . . . . 6
⊢ (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin
↾ ℝ)‘((𝑁
+ (1 / 2)) · 𝑥)) =
(sin‘((𝑁 + (1 / 2))
· 𝑥))) |
| 31 | 26, 30 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (-π[,]π)) → ((sin ↾
ℝ)‘((𝑁 + (1 /
2)) · 𝑥)) =
(sin‘((𝑁 + (1 / 2))
· 𝑥))) |
| 32 | 31 | mpteq2dva 5242 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾
ℝ)‘((𝑁 + (1 /
2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑥)))) |
| 33 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠)) |
| 34 | 33 | fveq2d 6910 |
. . . . . 6
⊢ (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠))) |
| 35 | 34 | cbvmptv 5255 |
. . . . 5
⊢ (𝑥 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑥))) = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) |
| 36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑥))) = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠)))) |
| 37 | 29, 32, 36 | 3eqtrd 2781 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾
ℝ)‘((𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠)))) |
| 38 | | fourierdlem18.s |
. . . . 5
⊢ 𝑆 = (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) |
| 39 | 38 | eqcomi 2746 |
. . . 4
⊢ (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) = 𝑆 |
| 40 | 39 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦
(sin‘((𝑁 + (1 / 2))
· 𝑠))) = 𝑆) |
| 41 | 19, 37, 40 | 3eqtrrd 2782 |
. 2
⊢ (𝜑 → 𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦
((𝑁 + (1 / 2)) ·
𝑠)))) |
| 42 | | ax-resscn 11212 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
| 43 | 12, 42 | sstri 3993 |
. . . . . . 7
⊢
(-π[,]π) ⊆ ℂ |
| 44 | 43 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (-π[,]π) ⊆
ℂ) |
| 45 | 4 | recnd 11289 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 46 | | halfcn 12481 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℂ |
| 47 | 46 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
| 48 | 45, 47 | addcld 11280 |
. . . . . 6
⊢ (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ) |
| 49 | | ssid 4006 |
. . . . . . 7
⊢ ℂ
⊆ ℂ |
| 50 | 49 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 51 | 44, 48, 50 | constcncfg 45887 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈
((-π[,]π)–cn→ℂ)) |
| 52 | 44, 50 | idcncfg 45888 |
. . . . 5
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈
((-π[,]π)–cn→ℂ)) |
| 53 | 51, 52 | mulcncf 25480 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈
((-π[,]π)–cn→ℂ)) |
| 54 | | ssid 4006 |
. . . . 5
⊢
(-π[,]π) ⊆ (-π[,]π) |
| 55 | 54 | a1i 11 |
. . . 4
⊢ (𝜑 → (-π[,]π) ⊆
(-π[,]π)) |
| 56 | 42 | a1i 11 |
. . . 4
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 57 | 16, 53, 55, 56, 15 | cncfmptssg 45886 |
. . 3
⊢ (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈
((-π[,]π)–cn→ℝ)) |
| 58 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → (sin ↾ ℝ)
∈ (ℝ–cn→ℝ)) |
| 59 | 57, 58 | cncfco 24933 |
. 2
⊢ (𝜑 → ((sin ↾ ℝ)
∘ (𝑠 ∈
(-π[,]π) ↦ ((𝑁
+ (1 / 2)) · 𝑠)))
∈ ((-π[,]π)–cn→ℝ)) |
| 60 | 41, 59 | eqeltrd 2841 |
1
⊢ (𝜑 → 𝑆 ∈ ((-π[,]π)–cn→ℝ)) |