Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem18 Structured version   Visualization version   GIF version

Theorem fourierdlem18 43637
Description: The function 𝑆 is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem18.n (𝜑𝑁 ∈ ℝ)
fourierdlem18.s 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
Assertion
Ref Expression
fourierdlem18 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Distinct variable groups:   𝑁,𝑠   𝜑,𝑠
Allowed substitution hint:   𝑆(𝑠)

Proof of Theorem fourierdlem18
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 resincncf 43387 . . . . 5 (sin ↾ ℝ) ∈ (ℝ–cn→ℝ)
2 cncff 24054 . . . . 5 ((sin ↾ ℝ) ∈ (ℝ–cn→ℝ) → (sin ↾ ℝ):ℝ⟶ℝ)
31, 2ax-mp 5 . . . 4 (sin ↾ ℝ):ℝ⟶ℝ
4 fourierdlem18.n . . . . . . . 8 (𝜑𝑁 ∈ ℝ)
5 halfre 12187 . . . . . . . . 9 (1 / 2) ∈ ℝ
65a1i 11 . . . . . . . 8 (𝜑 → (1 / 2) ∈ ℝ)
74, 6readdcld 11005 . . . . . . 7 (𝜑 → (𝑁 + (1 / 2)) ∈ ℝ)
87adantr 481 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
9 pire 25613 . . . . . . . . . 10 π ∈ ℝ
109renegcli 11282 . . . . . . . . 9 -π ∈ ℝ
11 iccssre 13160 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
1210, 9, 11mp2an 689 . . . . . . . 8 (-π[,]π) ⊆ ℝ
1312sseli 3922 . . . . . . 7 (𝑠 ∈ (-π[,]π) → 𝑠 ∈ ℝ)
1413adantl 482 . . . . . 6 ((𝜑𝑠 ∈ (-π[,]π)) → 𝑠 ∈ ℝ)
158, 14remulcld 11006 . . . . 5 ((𝜑𝑠 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑠) ∈ ℝ)
16 eqid 2740 . . . . 5 (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))
1715, 16fmptd 6985 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ)
18 fcompt 7002 . . . 4 (((sin ↾ ℝ):ℝ⟶ℝ ∧ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)):(-π[,]π)⟶ℝ) → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
193, 17, 18sylancr 587 . . 3 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))))
20 eqidd 2741 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) = (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)))
21 oveq2 7279 . . . . . . . 8 (𝑠 = 𝑥 → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
2221adantl 482 . . . . . . 7 (((𝜑𝑥 ∈ (-π[,]π)) ∧ 𝑠 = 𝑥) → ((𝑁 + (1 / 2)) · 𝑠) = ((𝑁 + (1 / 2)) · 𝑥))
23 simpr 485 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ (-π[,]π))
247adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → (𝑁 + (1 / 2)) ∈ ℝ)
2512, 23sselid 3924 . . . . . . . 8 ((𝜑𝑥 ∈ (-π[,]π)) → 𝑥 ∈ ℝ)
2624, 25remulcld 11006 . . . . . . 7 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ)
2720, 22, 23, 26fvmptd 6879 . . . . . 6 ((𝜑𝑥 ∈ (-π[,]π)) → ((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥) = ((𝑁 + (1 / 2)) · 𝑥))
2827fveq2d 6775 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥)) = ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)))
2928mpteq2dva 5179 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))))
30 fvres 6790 . . . . . 6 (((𝑁 + (1 / 2)) · 𝑥) ∈ ℝ → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3126, 30syl 17 . . . . 5 ((𝜑𝑥 ∈ (-π[,]π)) → ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑥)))
3231mpteq2dva 5179 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))))
33 oveq2 7279 . . . . . . 7 (𝑥 = 𝑠 → ((𝑁 + (1 / 2)) · 𝑥) = ((𝑁 + (1 / 2)) · 𝑠))
3433fveq2d 6775 . . . . . 6 (𝑥 = 𝑠 → (sin‘((𝑁 + (1 / 2)) · 𝑥)) = (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3534cbvmptv 5192 . . . . 5 (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3635a1i 11 . . . 4 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
3729, 32, 363eqtrd 2784 . . 3 (𝜑 → (𝑥 ∈ (-π[,]π) ↦ ((sin ↾ ℝ)‘((𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))‘𝑥))) = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))))
38 fourierdlem18.s . . . . 5 𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠)))
3938eqcomi 2749 . . . 4 (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆
4039a1i 11 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑁 + (1 / 2)) · 𝑠))) = 𝑆)
4119, 37, 403eqtrrd 2785 . 2 (𝜑𝑆 = ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))))
42 ax-resscn 10929 . . . . . . . 8 ℝ ⊆ ℂ
4312, 42sstri 3935 . . . . . . 7 (-π[,]π) ⊆ ℂ
4443a1i 11 . . . . . 6 (𝜑 → (-π[,]π) ⊆ ℂ)
454recnd 11004 . . . . . . 7 (𝜑𝑁 ∈ ℂ)
46 halfcn 12188 . . . . . . . 8 (1 / 2) ∈ ℂ
4746a1i 11 . . . . . . 7 (𝜑 → (1 / 2) ∈ ℂ)
4845, 47addcld 10995 . . . . . 6 (𝜑 → (𝑁 + (1 / 2)) ∈ ℂ)
49 ssid 3948 . . . . . . 7 ℂ ⊆ ℂ
5049a1i 11 . . . . . 6 (𝜑 → ℂ ⊆ ℂ)
5144, 48, 50constcncfg 43384 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ (𝑁 + (1 / 2))) ∈ ((-π[,]π)–cn→ℂ))
5244, 50idcncfg 43385 . . . . 5 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ 𝑠) ∈ ((-π[,]π)–cn→ℂ))
5351, 52mulcncf 24608 . . . 4 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℂ))
54 ssid 3948 . . . . 5 (-π[,]π) ⊆ (-π[,]π)
5554a1i 11 . . . 4 (𝜑 → (-π[,]π) ⊆ (-π[,]π))
5642a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
5716, 53, 55, 56, 15cncfmptssg 43383 . . 3 (𝜑 → (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠)) ∈ ((-π[,]π)–cn→ℝ))
581a1i 11 . . 3 (𝜑 → (sin ↾ ℝ) ∈ (ℝ–cn→ℝ))
5957, 58cncfco 24068 . 2 (𝜑 → ((sin ↾ ℝ) ∘ (𝑠 ∈ (-π[,]π) ↦ ((𝑁 + (1 / 2)) · 𝑠))) ∈ ((-π[,]π)–cn→ℝ))
6041, 59eqeltrd 2841 1 (𝜑𝑆 ∈ ((-π[,]π)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892  cmpt 5162  cres 5592  ccom 5594  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  1c1 10873   + caddc 10875   · cmul 10877  -cneg 11206   / cdiv 11632  2c2 12028  [,]cicc 13081  sincsin 15771  πcpi 15774  cnccncf 24037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ioc 13083  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-fac 13986  df-bc 14015  df-hash 14043  df-shft 14776  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-limsup 15178  df-clim 15195  df-rlim 15196  df-sum 15396  df-ef 15775  df-sin 15777  df-cos 15778  df-pi 15780  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029
This theorem is referenced by:  fourierdlem85  43703  fourierdlem88  43706
  Copyright terms: Public domain W3C validator