Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem16 Structured version   Visualization version   GIF version

Theorem fourierdlem16 43554
Description: The coefficients of the fourier series are integrable and reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem16.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem16.c 𝐶 = (-π(,)π)
fourierdlem16.fibl (𝜑 → (𝐹𝐶) ∈ 𝐿1)
fourierdlem16.a 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
fourierdlem16.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
fourierdlem16 (𝜑 → (((𝐴𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Distinct variable groups:   𝐶,𝑛,𝑥   𝑛,𝐹,𝑥   𝑛,𝑁,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑛)

Proof of Theorem fourierdlem16
Dummy variables 𝑏 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem16.f . . . . . . . . . 10 (𝜑𝐹:ℝ⟶ℝ)
21adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝐹:ℝ⟶ℝ)
3 ioossre 13069 . . . . . . . . . . 11 (-π(,)π) ⊆ ℝ
4 id 22 . . . . . . . . . . . 12 (𝑥𝐶𝑥𝐶)
5 fourierdlem16.c . . . . . . . . . . . 12 𝐶 = (-π(,)π)
64, 5eleqtrdi 2849 . . . . . . . . . . 11 (𝑥𝐶𝑥 ∈ (-π(,)π))
73, 6sselid 3915 . . . . . . . . . 10 (𝑥𝐶𝑥 ∈ ℝ)
87adantl 481 . . . . . . . . 9 ((𝜑𝑥𝐶) → 𝑥 ∈ ℝ)
92, 8ffvelrnd 6944 . . . . . . . 8 ((𝜑𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
109adantlr 711 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℝ)
11 nn0re 12172 . . . . . . . . . . 11 (𝑛 ∈ ℕ0𝑛 ∈ ℝ)
1211adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑛 ∈ ℝ)
137adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕ0𝑥𝐶) → 𝑥 ∈ ℝ)
1412, 13remulcld 10936 . . . . . . . . 9 ((𝑛 ∈ ℕ0𝑥𝐶) → (𝑛 · 𝑥) ∈ ℝ)
1514recoscld 15781 . . . . . . . 8 ((𝑛 ∈ ℕ0𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1615adantll 710 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ)
1710, 16remulcld 10936 . . . . . 6 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ)
18 ioombl 24634 . . . . . . . . . . 11 (-π(,)π) ∈ dom vol
195, 18eqeltri 2835 . . . . . . . . . 10 𝐶 ∈ dom vol
2019a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → 𝐶 ∈ dom vol)
21 eqidd 2739 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
22 eqidd 2739 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝑥𝐶 ↦ (𝐹𝑥)))
2320, 16, 10, 21, 22offval2 7531 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) = (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))))
2416recnd 10934 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ)
2510recnd 10934 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → (𝐹𝑥) ∈ ℂ)
2624, 25mulcomd 10927 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑥𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥)) = ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))))
2726mpteq2dva 5170 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹𝑥))) = (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))))
2823, 27eqtr2d 2779 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))))
29 coscn 25509 . . . . . . . . . . . 12 cos ∈ (ℂ–cn→ℂ)
3029a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → cos ∈ (ℂ–cn→ℂ))
315, 3eqsstri 3951 . . . . . . . . . . . . . . 15 𝐶 ⊆ ℝ
32 ax-resscn 10859 . . . . . . . . . . . . . . 15 ℝ ⊆ ℂ
3331, 32sstri 3926 . . . . . . . . . . . . . 14 𝐶 ⊆ ℂ
3433a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝐶 ⊆ ℂ)
3511recnd 10934 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
36 ssid 3939 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
3736a1i 11 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ0 → ℂ ⊆ ℂ)
3834, 35, 37constcncfg 43303 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑛) ∈ (𝐶cn→ℂ))
39 cncfmptid 23982 . . . . . . . . . . . . . 14 ((𝐶 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4033, 36, 39mp2an 688 . . . . . . . . . . . . 13 (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ)
4140a1i 11 . . . . . . . . . . . 12 (𝑛 ∈ ℕ0 → (𝑥𝐶𝑥) ∈ (𝐶cn→ℂ))
4238, 41mulcncf 24515 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶cn→ℂ))
4330, 42cncfmpt1f 23983 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ))
44 cnmbf 24728 . . . . . . . . . 10 ((𝐶 ∈ dom vol ∧ (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶cn→ℂ)) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4519, 43, 44sylancr 586 . . . . . . . . 9 (𝑛 ∈ ℕ0 → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
4645adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn)
471feqmptd 6819 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
4847reseq1d 5879 . . . . . . . . . . 11 (𝜑 → (𝐹𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶))
49 resmpt 5934 . . . . . . . . . . . 12 (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5031, 49mp1i 13 . . . . . . . . . . 11 (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹𝑥)) ↾ 𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
5148, 50eqtr2d 2779 . . . . . . . . . 10 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) = (𝐹𝐶))
52 fourierdlem16.fibl . . . . . . . . . 10 (𝜑 → (𝐹𝐶) ∈ 𝐿1)
5351, 52eqeltrd 2839 . . . . . . . . 9 (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
5453adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1)
55 1re 10906 . . . . . . . . . 10 1 ∈ ℝ
56 simpr 484 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
57 nfv 1918 . . . . . . . . . . . . . . . 16 𝑥 𝑛 ∈ ℕ0
58 nfmpt1 5178 . . . . . . . . . . . . . . . . . 18 𝑥(𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
5958nfdm 5849 . . . . . . . . . . . . . . . . 17 𝑥dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6059nfcri 2893 . . . . . . . . . . . . . . . 16 𝑥 𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))
6157, 60nfan 1903 . . . . . . . . . . . . . . 15 𝑥(𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
6215ex 412 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6362adantr 480 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ))
6461, 63ralrimi 3139 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ)
65 dmmptg 6134 . . . . . . . . . . . . . 14 (∀𝑥𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6664, 65syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶)
6756, 66eleqtrd 2841 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦𝐶)
68 eqidd 2739 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))))
69 oveq2 7263 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦))
7069fveq2d 6760 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
7170adantl 481 . . . . . . . . . . . . . . 15 (((𝑛 ∈ ℕ0𝑦𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦)))
72 simpr 484 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦𝐶)
7311adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑛 ∈ ℝ)
7431, 72sselid 3915 . . . . . . . . . . . . . . . . 17 ((𝑛 ∈ ℕ0𝑦𝐶) → 𝑦 ∈ ℝ)
7573, 74remulcld 10936 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ0𝑦𝐶) → (𝑛 · 𝑦) ∈ ℝ)
7675recoscld 15781 . . . . . . . . . . . . . . 15 ((𝑛 ∈ ℕ0𝑦𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ)
7768, 71, 72, 76fvmptd 6864 . . . . . . . . . . . . . 14 ((𝑛 ∈ ℕ0𝑦𝐶) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦)))
7877fveq2d 6760 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦))))
79 abscosbd 42706 . . . . . . . . . . . . . 14 ((𝑛 · 𝑦) ∈ ℝ → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8075, 79syl 17 . . . . . . . . . . . . 13 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘(cos‘(𝑛 · 𝑦))) ≤ 1)
8178, 80eqbrtrd 5092 . . . . . . . . . . . 12 ((𝑛 ∈ ℕ0𝑦𝐶) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8267, 81syldan 590 . . . . . . . . . . 11 ((𝑛 ∈ ℕ0𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
8382ralrimiva 3107 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)
84 breq2 5074 . . . . . . . . . . . 12 (𝑏 = 1 → ((abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8584ralbidv 3120 . . . . . . . . . . 11 (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1))
8685rspcev 3552 . . . . . . . . . 10 ((1 ∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8755, 83, 86sylancr 586 . . . . . . . . 9 (𝑛 ∈ ℕ0 → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
8887adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ0) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏)
89 bddmulibl 24908 . . . . . . . 8 (((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1 ∧ ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9046, 54, 88, 89syl3anc 1369 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → ((𝑥𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥𝐶 ↦ (𝐹𝑥))) ∈ 𝐿1)
9128, 90eqeltrd 2839 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → (𝑥𝐶 ↦ ((𝐹𝑥) · (cos‘(𝑛 · 𝑥)))) ∈ 𝐿1)
9217, 91itgrecl 24867 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ)
93 pire 25520 . . . . . 6 π ∈ ℝ
9493a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → π ∈ ℝ)
95 0re 10908 . . . . . . 7 0 ∈ ℝ
96 pipos 25522 . . . . . . 7 0 < π
9795, 96gtneii 11017 . . . . . 6 π ≠ 0
9897a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → π ≠ 0)
9992, 94, 98redivcld 11733 . . . 4 ((𝜑𝑛 ∈ ℕ0) → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ)
100 fourierdlem16.a . . . 4 𝐴 = (𝑛 ∈ ℕ0 ↦ (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))
10199, 100fmptd 6970 . . 3 (𝜑𝐴:ℕ0⟶ℝ)
102 fourierdlem16.n . . 3 (𝜑𝑁 ∈ ℕ0)
103101, 102ffvelrnd 6944 . 2 (𝜑 → (𝐴𝑁) ∈ ℝ)
104102ancli 548 . . 3 (𝜑 → (𝜑𝑁 ∈ ℕ0))
105 eleq1 2826 . . . . . 6 (𝑛 = 𝑁 → (𝑛 ∈ ℕ0𝑁 ∈ ℕ0))
106105anbi2d 628 . . . . 5 (𝑛 = 𝑁 → ((𝜑𝑛 ∈ ℕ0) ↔ (𝜑𝑁 ∈ ℕ0)))
107 simpl 482 . . . . . . . . . 10 ((𝑛 = 𝑁𝑥𝐶) → 𝑛 = 𝑁)
108107oveq1d 7270 . . . . . . . . 9 ((𝑛 = 𝑁𝑥𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥))
109108fveq2d 6760 . . . . . . . 8 ((𝑛 = 𝑁𝑥𝐶) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑁 · 𝑥)))
110109oveq2d 7271 . . . . . . 7 ((𝑛 = 𝑁𝑥𝐶) → ((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹𝑥) · (cos‘(𝑁 · 𝑥))))
111110itgeq2dv 24851 . . . . . 6 (𝑛 = 𝑁 → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥)
112111eleq1d 2823 . . . . 5 (𝑛 = 𝑁 → (∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
113106, 112imbi12d 344 . . . 4 (𝑛 = 𝑁 → (((𝜑𝑛 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑𝑁 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)))
114113, 92vtoclg 3495 . . 3 (𝑁 ∈ ℕ0 → ((𝜑𝑁 ∈ ℕ0) → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
115102, 104, 114sylc 65 . 2 (𝜑 → ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)
116103, 53, 115jca31 514 1 (𝜑 → (((𝐴𝑁) ∈ ℝ ∧ (𝑥𝐶 ↦ (𝐹𝑥)) ∈ 𝐿1) ∧ ∫𝐶((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941  -cneg 11136   / cdiv 11562  0cn0 12163  (,)cioo 13008  abscabs 14873  cosccos 15702  πcpi 15704  cnccncf 23945  volcvol 24532  MblFncmbf 24683  𝐿1cibl 24686  citg 24687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689  df-itg2 24690  df-ibl 24691  df-itg 24692  df-0p 24739  df-limc 24935  df-dv 24936
This theorem is referenced by:  fourierdlem83  43620  fourierdlem112  43649
  Copyright terms: Public domain W3C validator