Step | Hyp | Ref
| Expression |
1 | | fourierdlem16.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
2 | 1 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐹:ℝ⟶ℝ) |
3 | | ioossre 12996 |
. . . . . . . . . . 11
⊢
(-π(,)π) ⊆ ℝ |
4 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ 𝐶) |
5 | | fourierdlem16.c |
. . . . . . . . . . . 12
⊢ 𝐶 =
(-π(,)π) |
6 | 4, 5 | eleqtrdi 2848 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ (-π(,)π)) |
7 | 3, 6 | sseldi 3899 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐶 → 𝑥 ∈ ℝ) |
8 | 7 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℝ) |
9 | 2, 8 | ffvelrnd 6905 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℝ) |
10 | 9 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℝ) |
11 | | nn0re 12099 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℝ) |
12 | 11 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → 𝑛 ∈ ℝ) |
13 | 7 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → 𝑥 ∈ ℝ) |
14 | 12, 13 | remulcld 10863 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → (𝑛 · 𝑥) ∈ ℝ) |
15 | 14 | recoscld 15705 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ0
∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
16 | 15 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
17 | 10, 16 | remulcld 10863 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) ∈ ℝ) |
18 | | ioombl 24462 |
. . . . . . . . . . 11
⊢
(-π(,)π) ∈ dom vol |
19 | 5, 18 | eqeltri 2834 |
. . . . . . . . . 10
⊢ 𝐶 ∈ dom vol |
20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ dom
vol) |
21 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
22 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
23 | 20, 16, 10, 21, 22 | offval2 7488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥)))) |
24 | 16 | recnd 10861 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) ∈ ℂ) |
25 | 10 | recnd 10861 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → (𝐹‘𝑥) ∈ ℂ) |
26 | 24, 25 | mulcomd 10854 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑛 ∈ ℕ0) ∧ 𝑥 ∈ 𝐶) → ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥)) = ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) |
27 | 26 | mpteq2dva 5150 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((cos‘(𝑛 · 𝑥)) · (𝐹‘𝑥))) = (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))))) |
28 | 23, 27 | eqtr2d 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) = ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)))) |
29 | | coscn 25337 |
. . . . . . . . . . . 12
⊢ cos
∈ (ℂ–cn→ℂ) |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ cos ∈ (ℂ–cn→ℂ)) |
31 | 5, 3 | eqsstri 3935 |
. . . . . . . . . . . . . . 15
⊢ 𝐶 ⊆
ℝ |
32 | | ax-resscn 10786 |
. . . . . . . . . . . . . . 15
⊢ ℝ
⊆ ℂ |
33 | 31, 32 | sstri 3910 |
. . . . . . . . . . . . . 14
⊢ 𝐶 ⊆
ℂ |
34 | 33 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ 𝐶 ⊆
ℂ) |
35 | 11 | recnd 10861 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ 𝑛 ∈
ℂ) |
36 | | ssid 3923 |
. . . . . . . . . . . . . 14
⊢ ℂ
⊆ ℂ |
37 | 36 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑛 ∈ ℕ0
→ ℂ ⊆ ℂ) |
38 | 34, 35, 37 | constcncfg 43088 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ 𝑛) ∈ (𝐶–cn→ℂ)) |
39 | | cncfmptid 23810 |
. . . . . . . . . . . . . 14
⊢ ((𝐶 ⊆ ℂ ∧ ℂ
⊆ ℂ) → (𝑥
∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ)) |
40 | 33, 36, 39 | mp2an 692 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ) |
41 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ 𝑥) ∈ (𝐶–cn→ℂ)) |
42 | 38, 41 | mulcncf 24343 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (𝑛 · 𝑥)) ∈ (𝐶–cn→ℂ)) |
43 | 30, 42 | cncfmpt1f 23811 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) |
44 | | cnmbf 24556 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ dom vol ∧ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ (𝐶–cn→ℂ)) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
45 | 19, 43, 44 | sylancr 590 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
46 | 45 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn) |
47 | 1 | feqmptd 6780 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
48 | 47 | reseq1d 5850 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ↾ 𝐶) = ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶)) |
49 | | resmpt 5905 |
. . . . . . . . . . . 12
⊢ (𝐶 ⊆ ℝ → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
50 | 31, 49 | mp1i 13 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑥 ∈ ℝ ↦ (𝐹‘𝑥)) ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) |
51 | 48, 50 | eqtr2d 2778 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) = (𝐹 ↾ 𝐶)) |
52 | | fourierdlem16.fibl |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ↾ 𝐶) ∈
𝐿1) |
53 | 51, 52 | eqeltrd 2838 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈
𝐿1) |
54 | 53 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈
𝐿1) |
55 | | 1re 10833 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
56 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
57 | | nfv 1922 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑛 ∈
ℕ0 |
58 | | nfmpt1 5153 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑥(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
59 | 58 | nfdm 5820 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑥dom
(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
60 | 59 | nfcri 2891 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) |
61 | 57, 60 | nfan 1907 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑥(𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
62 | 15 | ex 416 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 ∈ ℕ0
→ (𝑥 ∈ 𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ)) |
63 | 62 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (𝑥 ∈ 𝐶 → (cos‘(𝑛 · 𝑥)) ∈ ℝ)) |
64 | 61, 63 | ralrimi 3137 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → ∀𝑥 ∈ 𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ) |
65 | | dmmptg 6105 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐶 (cos‘(𝑛 · 𝑥)) ∈ ℝ → dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶) |
66 | 64, 65 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = 𝐶) |
67 | 56, 66 | eleqtrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → 𝑦 ∈ 𝐶) |
68 | | eqidd 2738 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) = (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) |
69 | | oveq2 7221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑛 · 𝑥) = (𝑛 · 𝑦)) |
70 | 69 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦))) |
71 | 70 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ (((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) ∧ 𝑥 = 𝑦) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑛 · 𝑦))) |
72 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ 𝐶) |
73 | 11 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑛 ∈ ℝ) |
74 | 31, 72 | sseldi 3899 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → 𝑦 ∈ ℝ) |
75 | 73, 74 | remulcld 10863 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (𝑛 · 𝑦) ∈ ℝ) |
76 | 75 | recoscld 15705 |
. . . . . . . . . . . . . . 15
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (cos‘(𝑛 · 𝑦)) ∈ ℝ) |
77 | 68, 71, 72, 76 | fvmptd 6825 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦) = (cos‘(𝑛 · 𝑦))) |
78 | 77 | fveq2d 6721 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) = (abs‘(cos‘(𝑛 · 𝑦)))) |
79 | | abscosbd 42489 |
. . . . . . . . . . . . . 14
⊢ ((𝑛 · 𝑦) ∈ ℝ →
(abs‘(cos‘(𝑛
· 𝑦))) ≤
1) |
80 | 75, 79 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) →
(abs‘(cos‘(𝑛
· 𝑦))) ≤
1) |
81 | 78, 80 | eqbrtrd 5075 |
. . . . . . . . . . . 12
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ 𝐶) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
82 | 67, 81 | syldan 594 |
. . . . . . . . . . 11
⊢ ((𝑛 ∈ ℕ0
∧ 𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))) → (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
83 | 82 | ralrimiva 3105 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ0
→ ∀𝑦 ∈ dom
(𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) |
84 | | breq2 5057 |
. . . . . . . . . . . 12
⊢ (𝑏 = 1 → ((abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ (abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
85 | 84 | ralbidv 3118 |
. . . . . . . . . . 11
⊢ (𝑏 = 1 → (∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏 ↔ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1)) |
86 | 85 | rspcev 3537 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 1) → ∃𝑏 ∈ ℝ ∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
87 | 55, 83, 86 | sylancr 590 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ0
→ ∃𝑏 ∈
ℝ ∀𝑦 ∈
dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
88 | 87 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) |
89 | | bddmulibl 24736 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∈ MblFn ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1 ∧
∃𝑏 ∈ ℝ
∀𝑦 ∈ dom (𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))(abs‘((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥)))‘𝑦)) ≤ 𝑏) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
90 | 46, 54, 88, 89 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝑥 ∈ 𝐶 ↦ (cos‘(𝑛 · 𝑥))) ∘f · (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) ∈
𝐿1) |
91 | 28, 90 | eqeltrd 2838 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝑥 ∈ 𝐶 ↦ ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥)))) ∈
𝐿1) |
92 | 17, 91 | itgrecl 24695 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) |
93 | | pire 25348 |
. . . . . 6
⊢ π
∈ ℝ |
94 | 93 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → π
∈ ℝ) |
95 | | 0re 10835 |
. . . . . . 7
⊢ 0 ∈
ℝ |
96 | | pipos 25350 |
. . . . . . 7
⊢ 0 <
π |
97 | 95, 96 | gtneii 10944 |
. . . . . 6
⊢ π ≠
0 |
98 | 97 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → π ≠
0) |
99 | 92, 94, 98 | redivcld 11660 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) →
(∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π) ∈ ℝ) |
100 | | fourierdlem16.a |
. . . 4
⊢ 𝐴 = (𝑛 ∈ ℕ0 ↦
(∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π)) |
101 | 99, 100 | fmptd 6931 |
. . 3
⊢ (𝜑 → 𝐴:ℕ0⟶ℝ) |
102 | | fourierdlem16.n |
. . 3
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
103 | 101, 102 | ffvelrnd 6905 |
. 2
⊢ (𝜑 → (𝐴‘𝑁) ∈ ℝ) |
104 | 102 | ancli 552 |
. . 3
⊢ (𝜑 → (𝜑 ∧ 𝑁 ∈
ℕ0)) |
105 | | eleq1 2825 |
. . . . . 6
⊢ (𝑛 = 𝑁 → (𝑛 ∈ ℕ0 ↔ 𝑁 ∈
ℕ0)) |
106 | 105 | anbi2d 632 |
. . . . 5
⊢ (𝑛 = 𝑁 → ((𝜑 ∧ 𝑛 ∈ ℕ0) ↔ (𝜑 ∧ 𝑁 ∈
ℕ0))) |
107 | | simpl 486 |
. . . . . . . . . 10
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶) → 𝑛 = 𝑁) |
108 | 107 | oveq1d 7228 |
. . . . . . . . 9
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶) → (𝑛 · 𝑥) = (𝑁 · 𝑥)) |
109 | 108 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶) → (cos‘(𝑛 · 𝑥)) = (cos‘(𝑁 · 𝑥))) |
110 | 109 | oveq2d 7229 |
. . . . . . 7
⊢ ((𝑛 = 𝑁 ∧ 𝑥 ∈ 𝐶) → ((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) = ((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥)))) |
111 | 110 | itgeq2dv 24679 |
. . . . . 6
⊢ (𝑛 = 𝑁 → ∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 = ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥) |
112 | 111 | eleq1d 2822 |
. . . . 5
⊢ (𝑛 = 𝑁 → (∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ ↔ ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) |
113 | 106, 112 | imbi12d 348 |
. . . 4
⊢ (𝑛 = 𝑁 → (((𝜑 ∧ 𝑛 ∈ ℕ0) →
∫𝐶((𝐹‘𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 ∈ ℝ) ↔ ((𝜑 ∧ 𝑁 ∈ ℕ0) →
∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ))) |
114 | 113, 92 | vtoclg 3481 |
. . 3
⊢ (𝑁 ∈ ℕ0
→ ((𝜑 ∧ 𝑁 ∈ ℕ0)
→ ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) |
115 | 102, 104,
114 | sylc 65 |
. 2
⊢ (𝜑 → ∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ) |
116 | 103, 53, 115 | jca31 518 |
1
⊢ (𝜑 → (((𝐴‘𝑁) ∈ ℝ ∧ (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥)) ∈ 𝐿1) ∧
∫𝐶((𝐹‘𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 ∈ ℝ)) |