MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzass4 Structured version   Visualization version   GIF version

Theorem fzass4 13538
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
2 simprl 769 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
31, 2jca 512 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
4 uztrn 12839 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
54ancoms 459 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ (ℤ𝐴))
65ad2ant2r 745 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐴))
7 simprr 771 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
83, 6, 7jca32 516 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
9 simpll 765 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
10 uztrn 12839 . . . . . . 7 ((𝐷 ∈ (ℤ𝐶) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐷 ∈ (ℤ𝐵))
1110ancoms 459 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)) → 𝐷 ∈ (ℤ𝐵))
1211ad2ant2l 744 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐵))
139, 12jca 512 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
14 simplr 767 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
15 simprr 771 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
1613, 14, 15jca32 516 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
178, 16impbii 208 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
18 elfzuzb 13494 . . 3 (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
19 elfzuzb 13494 . . 3 (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)))
2018, 19anbi12i 627 . 2 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
21 elfzuzb 13494 . . 3 (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
22 elfzuzb 13494 . . 3 (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶)))
2321, 22anbi12i 627 . 2 ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
2417, 20, 233bitr4i 302 1 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  cfv 6543  (class class class)co 7408  cuz 12821  ...cfz 13483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-pre-lttri 11183  ax-pre-lttrn 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-neg 11446  df-z 12558  df-uz 12822  df-fz 13484
This theorem is referenced by:  ccatswrd  14617  ccatpfx  14650  splfv1  14704
  Copyright terms: Public domain W3C validator