Proof of Theorem fzass4
Step | Hyp | Ref
| Expression |
1 | | simpll 763 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐵 ∈ (ℤ≥‘𝐴)) |
2 | | simprl 767 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐵)) |
3 | 1, 2 | jca 511 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵))) |
4 | | uztrn 12529 |
. . . . . 6
⊢ ((𝐶 ∈
(ℤ≥‘𝐵) ∧ 𝐵 ∈ (ℤ≥‘𝐴)) → 𝐶 ∈ (ℤ≥‘𝐴)) |
5 | 4 | ancoms 458 |
. . . . 5
⊢ ((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐶 ∈ (ℤ≥‘𝐴)) |
6 | 5 | ad2ant2r 743 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐴)) |
7 | | simprr 769 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐶)) |
8 | 3, 6, 7 | jca32 515 |
. . 3
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
9 | | simpll 763 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐵 ∈ (ℤ≥‘𝐴)) |
10 | | uztrn 12529 |
. . . . . . 7
⊢ ((𝐷 ∈
(ℤ≥‘𝐶) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) → 𝐷 ∈ (ℤ≥‘𝐵)) |
11 | 10 | ancoms 458 |
. . . . . 6
⊢ ((𝐶 ∈
(ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)) → 𝐷 ∈ (ℤ≥‘𝐵)) |
12 | 11 | ad2ant2l 742 |
. . . . 5
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐵)) |
13 | 9, 12 | jca 511 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵))) |
14 | | simplr 765 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐶 ∈ (ℤ≥‘𝐵)) |
15 | | simprr 769 |
. . . 4
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → 𝐷 ∈ (ℤ≥‘𝐶)) |
16 | 13, 14, 15 | jca32 515 |
. . 3
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) → ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
17 | 8, 16 | impbii 208 |
. 2
⊢ (((𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
18 | | elfzuzb 13179 |
. . 3
⊢ (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵))) |
19 | | elfzuzb 13179 |
. . 3
⊢ (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) |
20 | 18, 19 | anbi12i 626 |
. 2
⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐵) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
21 | | elfzuzb 13179 |
. . 3
⊢ (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵))) |
22 | | elfzuzb 13179 |
. . 3
⊢ (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶))) |
23 | 21, 22 | anbi12i 626 |
. 2
⊢ ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ≥‘𝐴) ∧ 𝐶 ∈ (ℤ≥‘𝐵)) ∧ (𝐶 ∈ (ℤ≥‘𝐴) ∧ 𝐷 ∈ (ℤ≥‘𝐶)))) |
24 | 17, 20, 23 | 3bitr4i 302 |
1
⊢ ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷))) |