MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzass4 Structured version   Visualization version   GIF version

Theorem fzass4 12944
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
2 simprl 770 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
31, 2jca 515 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
4 uztrn 12253 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
54ancoms 462 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ (ℤ𝐴))
65ad2ant2r 746 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐴))
7 simprr 772 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
83, 6, 7jca32 519 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
9 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
10 uztrn 12253 . . . . . . 7 ((𝐷 ∈ (ℤ𝐶) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐷 ∈ (ℤ𝐵))
1110ancoms 462 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)) → 𝐷 ∈ (ℤ𝐵))
1211ad2ant2l 745 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐵))
139, 12jca 515 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
14 simplr 768 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
15 simprr 772 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
1613, 14, 15jca32 519 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
178, 16impbii 212 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
18 elfzuzb 12900 . . 3 (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
19 elfzuzb 12900 . . 3 (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)))
2018, 19anbi12i 629 . 2 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
21 elfzuzb 12900 . . 3 (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
22 elfzuzb 12900 . . 3 (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶)))
2321, 22anbi12i 629 . 2 ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
2417, 20, 233bitr4i 306 1 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wcel 2112  cfv 6328  (class class class)co 7139  cuz 12235  ...cfz 12889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-neg 10866  df-z 11974  df-uz 12236  df-fz 12890
This theorem is referenced by:  ccatswrd  14025  ccatpfx  14058  splfv1  14112
  Copyright terms: Public domain W3C validator