MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzass4 Structured version   Visualization version   GIF version

Theorem fzass4 13523
Description: Two ways to express a nondecreasing sequence of four integers. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzass4 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))

Proof of Theorem fzass4
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
2 simprl 770 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
31, 2jca 511 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
4 uztrn 12811 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐵 ∈ (ℤ𝐴)) → 𝐶 ∈ (ℤ𝐴))
54ancoms 458 . . . . 5 ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐶 ∈ (ℤ𝐴))
65ad2ant2r 747 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐴))
7 simprr 772 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
83, 6, 7jca32 515 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
9 simpll 766 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐵 ∈ (ℤ𝐴))
10 uztrn 12811 . . . . . . 7 ((𝐷 ∈ (ℤ𝐶) ∧ 𝐶 ∈ (ℤ𝐵)) → 𝐷 ∈ (ℤ𝐵))
1110ancoms 458 . . . . . 6 ((𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)) → 𝐷 ∈ (ℤ𝐵))
1211ad2ant2l 746 . . . . 5 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐵))
139, 12jca 511 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
14 simplr 768 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐶 ∈ (ℤ𝐵))
15 simprr 772 . . . 4 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → 𝐷 ∈ (ℤ𝐶))
1613, 14, 15jca32 515 . . 3 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))) → ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
178, 16impbii 209 . 2 (((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
18 elfzuzb 13479 . . 3 (𝐵 ∈ (𝐴...𝐷) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)))
19 elfzuzb 13479 . . 3 (𝐶 ∈ (𝐵...𝐷) ↔ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶)))
2018, 19anbi12i 628 . 2 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐵) ∧ 𝐷 ∈ (ℤ𝐶))))
21 elfzuzb 13479 . . 3 (𝐵 ∈ (𝐴...𝐶) ↔ (𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)))
22 elfzuzb 13479 . . 3 (𝐶 ∈ (𝐴...𝐷) ↔ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶)))
2321, 22anbi12i 628 . 2 ((𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)) ↔ ((𝐵 ∈ (ℤ𝐴) ∧ 𝐶 ∈ (ℤ𝐵)) ∧ (𝐶 ∈ (ℤ𝐴) ∧ 𝐷 ∈ (ℤ𝐶))))
2417, 20, 233bitr4i 303 1 ((𝐵 ∈ (𝐴...𝐷) ∧ 𝐶 ∈ (𝐵...𝐷)) ↔ (𝐵 ∈ (𝐴...𝐶) ∧ 𝐶 ∈ (𝐴...𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  cfv 6511  (class class class)co 7387  cuz 12793  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-neg 11408  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  ccatswrd  14633  ccatpfx  14666  splfv1  14720
  Copyright terms: Public domain W3C validator