MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzopth Structured version   Visualization version   GIF version

Theorem fzopth 12794
Description: A finite set of sequential integers has the ordered pair property (compare opth 5260) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 12764 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
21adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝑀...𝑁))
3 simpr 485 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀...𝑁) = (𝐽...𝐾))
42, 3eleqtrd 2885 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝐽...𝐾))
5 elfzuz 12754 . . . . . . 7 (𝑀 ∈ (𝐽...𝐾) → 𝑀 ∈ (ℤ𝐽))
6 uzss 12114 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
74, 5, 63syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
8 elfzuz2 12762 . . . . . . . . 9 (𝑀 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝐽))
9 eluzfz1 12764 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐽 ∈ (𝐽...𝐾))
104, 8, 93syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝐽...𝐾))
1110, 3eleqtrrd 2886 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝑀...𝑁))
12 elfzuz 12754 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
13 uzss 12114 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1411, 12, 133syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
157, 14eqssd 3906 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) = (ℤ𝐽))
16 eluzel2 12098 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ ℤ)
18 uz11 12116 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
1917, 18syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2015, 19mpbid 233 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 = 𝐽)
21 eluzfz2 12765 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐾 ∈ (𝐽...𝐾))
224, 8, 213syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝐽...𝐾))
2322, 3eleqtrrd 2886 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝑀...𝑁))
24 elfzuz3 12755 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
25 uzss 12114 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
2623, 24, 253syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
27 eluzfz2 12765 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2827adantr 481 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝑀...𝑁))
2928, 3eleqtrd 2885 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝐽...𝐾))
30 elfzuz3 12755 . . . . . . 7 (𝑁 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝑁))
31 uzss 12114 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
3229, 30, 313syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
3326, 32eqssd 3906 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) = (ℤ𝐾))
34 eluzelz 12103 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3534adantr 481 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ ℤ)
36 uz11 12116 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3735, 36syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3833, 37mpbid 233 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 = 𝐾)
3920, 38jca 512 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
4039ex 413 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
41 oveq12 7025 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀...𝑁) = (𝐽...𝐾))
4240, 41impbid1 226 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wss 3859  cfv 6225  (class class class)co 7016  cz 11829  cuz 12093  ...cfz 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-pre-lttri 10457  ax-pre-lttrn 10458
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-neg 10720  df-z 11830  df-uz 12094  df-fz 12743
This theorem is referenced by:  fz0to4untppr  12860  2ffzeq  12878  gsumval2a  17718  eedimeq  26367  sdclem2  34549
  Copyright terms: Public domain W3C validator