MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzopth Structured version   Visualization version   GIF version

Theorem fzopth 13598
Description: A finite set of sequential integers has the ordered pair property (compare opth 5487) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 13568 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
21adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝑀...𝑁))
3 simpr 484 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀...𝑁) = (𝐽...𝐾))
42, 3eleqtrd 2841 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝐽...𝐾))
5 elfzuz 13557 . . . . . . 7 (𝑀 ∈ (𝐽...𝐾) → 𝑀 ∈ (ℤ𝐽))
6 uzss 12899 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
74, 5, 63syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
8 elfzuz2 13566 . . . . . . . . 9 (𝑀 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝐽))
9 eluzfz1 13568 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐽 ∈ (𝐽...𝐾))
104, 8, 93syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝐽...𝐾))
1110, 3eleqtrrd 2842 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝑀...𝑁))
12 elfzuz 13557 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
13 uzss 12899 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1411, 12, 133syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
157, 14eqssd 4013 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) = (ℤ𝐽))
16 eluzel2 12881 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ ℤ)
18 uz11 12901 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
1917, 18syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2015, 19mpbid 232 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 = 𝐽)
21 eluzfz2 13569 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐾 ∈ (𝐽...𝐾))
224, 8, 213syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝐽...𝐾))
2322, 3eleqtrrd 2842 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝑀...𝑁))
24 elfzuz3 13558 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
25 uzss 12899 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
2623, 24, 253syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
27 eluzfz2 13569 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2827adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝑀...𝑁))
2928, 3eleqtrd 2841 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝐽...𝐾))
30 elfzuz3 13558 . . . . . . 7 (𝑁 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝑁))
31 uzss 12899 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
3229, 30, 313syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
3326, 32eqssd 4013 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) = (ℤ𝐾))
34 eluzelz 12886 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3534adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ ℤ)
36 uz11 12901 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3735, 36syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3833, 37mpbid 232 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 = 𝐾)
3920, 38jca 511 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
4039ex 412 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
41 oveq12 7440 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀...𝑁) = (𝐽...𝐾))
4240, 41impbid1 225 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wss 3963  cfv 6563  (class class class)co 7431  cz 12611  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-neg 11493  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  2ffzeq  13686  gsumval2a  18711  eedimeq  28928  sdclem2  37729
  Copyright terms: Public domain W3C validator