MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzopth Structured version   Visualization version   GIF version

Theorem fzopth 13464
Description: A finite set of sequential integers has the ordered pair property (compare opth 5419) under certain conditions. (Contributed by NM, 31-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzopth (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))

Proof of Theorem fzopth
StepHypRef Expression
1 eluzfz1 13434 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
21adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝑀...𝑁))
3 simpr 484 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀...𝑁) = (𝐽...𝐾))
42, 3eleqtrd 2830 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ (𝐽...𝐾))
5 elfzuz 13423 . . . . . . 7 (𝑀 ∈ (𝐽...𝐾) → 𝑀 ∈ (ℤ𝐽))
6 uzss 12758 . . . . . . 7 (𝑀 ∈ (ℤ𝐽) → (ℤ𝑀) ⊆ (ℤ𝐽))
74, 5, 63syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) ⊆ (ℤ𝐽))
8 elfzuz2 13432 . . . . . . . . 9 (𝑀 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝐽))
9 eluzfz1 13434 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐽 ∈ (𝐽...𝐾))
104, 8, 93syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝐽...𝐾))
1110, 3eleqtrrd 2831 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐽 ∈ (𝑀...𝑁))
12 elfzuz 13423 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ (ℤ𝑀))
13 uzss 12758 . . . . . . 7 (𝐽 ∈ (ℤ𝑀) → (ℤ𝐽) ⊆ (ℤ𝑀))
1411, 12, 133syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐽) ⊆ (ℤ𝑀))
157, 14eqssd 3953 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑀) = (ℤ𝐽))
16 eluzel2 12740 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
1716adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 ∈ ℤ)
18 uz11 12760 . . . . . 6 (𝑀 ∈ ℤ → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
1917, 18syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑀) = (ℤ𝐽) ↔ 𝑀 = 𝐽))
2015, 19mpbid 232 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑀 = 𝐽)
21 eluzfz2 13435 . . . . . . . . 9 (𝐾 ∈ (ℤ𝐽) → 𝐾 ∈ (𝐽...𝐾))
224, 8, 213syl 18 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝐽...𝐾))
2322, 3eleqtrrd 2831 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝐾 ∈ (𝑀...𝑁))
24 elfzuz3 13424 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝐾))
25 uzss 12758 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → (ℤ𝑁) ⊆ (ℤ𝐾))
2623, 24, 253syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) ⊆ (ℤ𝐾))
27 eluzfz2 13435 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
2827adantr 480 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝑀...𝑁))
2928, 3eleqtrd 2830 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ (𝐽...𝐾))
30 elfzuz3 13424 . . . . . . 7 (𝑁 ∈ (𝐽...𝐾) → 𝐾 ∈ (ℤ𝑁))
31 uzss 12758 . . . . . . 7 (𝐾 ∈ (ℤ𝑁) → (ℤ𝐾) ⊆ (ℤ𝑁))
3229, 30, 313syl 18 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝐾) ⊆ (ℤ𝑁))
3326, 32eqssd 3953 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (ℤ𝑁) = (ℤ𝐾))
34 eluzelz 12745 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
3534adantr 480 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 ∈ ℤ)
36 uz11 12760 . . . . . 6 (𝑁 ∈ ℤ → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3735, 36syl 17 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → ((ℤ𝑁) = (ℤ𝐾) ↔ 𝑁 = 𝐾))
3833, 37mpbid 232 . . . 4 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → 𝑁 = 𝐾)
3920, 38jca 511 . . 3 ((𝑁 ∈ (ℤ𝑀) ∧ (𝑀...𝑁) = (𝐽...𝐾)) → (𝑀 = 𝐽𝑁 = 𝐾))
4039ex 412 . 2 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) → (𝑀 = 𝐽𝑁 = 𝐾)))
41 oveq12 7358 . 2 ((𝑀 = 𝐽𝑁 = 𝐾) → (𝑀...𝑁) = (𝐽...𝐾))
4240, 41impbid1 225 1 (𝑁 ∈ (ℤ𝑀) → ((𝑀...𝑁) = (𝐽...𝐾) ↔ (𝑀 = 𝐽𝑁 = 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  (class class class)co 7349  cz 12471  cuz 12735  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-neg 11350  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  2ffzeq  13552  gsumval2a  18559  eedimeq  28847  sdclem2  37742
  Copyright terms: Public domain W3C validator