![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzss1 | Structured version Visualization version GIF version |
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13501 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
2 | id 22 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
3 | uztrn 12844 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | elfzuz3 13502 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
6 | 5 | adantl 482 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
7 | elfzuzb 13499 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
8 | 4, 6, 7 | sylanbrc 583 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
9 | 8 | ex 413 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
10 | 9 | ssrdv 3988 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 ‘cfv 6543 (class class class)co 7411 ℤ≥cuz 12826 ...cfz 13488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-neg 11451 df-z 12563 df-uz 12827 df-fz 13489 |
This theorem is referenced by: fzssnn 13549 fzp1ss 13556 ige2m1fz 13595 fzoss1 13663 fzossnn0 13667 sermono 14004 seqsplit 14005 seqf1olem2 14012 seqz 14020 seqcoll2 14430 swrdswrd 14659 swrdccatin2 14683 pfxccatin12lem2c 14684 pfxccatpfx2 14691 swrds2m 14896 mertenslem1 15834 reumodprminv 16741 prmgaplcmlem1 16988 structfn 17093 strleun 17094 cpmadugsumlemF 22598 ply1termlem 25941 dvply1 26021 ppisval2 26833 ppiltx 26905 chtlepsi 26933 chtublem 26938 chpub 26947 gausslemma2dlem3 27095 2lgslem1a 27118 chtppilimlem1 27200 pntlemq 27328 pntlemf 27332 axlowdimlem16 28470 axlowdimlem17 28471 axlowdim 28474 crctcshwlkn0lem3 29321 swrdrndisj 32376 esumpmono 33363 ballotlem2 33773 ballotlemfc0 33777 ballotlemfcc 33778 fsum2dsub 33905 chtvalz 33927 poimirlem1 36792 poimirlem2 36793 poimirlem4 36795 poimirlem6 36797 poimirlem7 36798 poimirlem15 36806 poimirlem16 36807 poimirlem19 36810 poimirlem20 36811 poimirlem23 36814 poimirlem27 36818 fdc 36916 jm2.23 42037 stoweidlem11 45026 elaa2lem 45248 iccpartgel 46396 |
Copyright terms: Public domain | W3C validator |