| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13423 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 3 | uztrn 12753 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 5 | elfzuz3 13424 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 7 | elfzuzb 13421 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 8 | 4, 6, 7 | sylanbrc 583 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 9 | 8 | ex 412 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
| 10 | 9 | ssrdv 3941 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 ℤ≥cuz 12735 ...cfz 13410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-neg 11350 df-z 12472 df-uz 12736 df-fz 13411 |
| This theorem is referenced by: fzssnn 13471 fzp1ss 13478 fzdif1 13508 ige2m1fz 13520 fzoss1 13589 fzossnn0 13593 sermono 13941 seqsplit 13942 seqf1olem2 13949 seqz 13957 seqcoll2 14372 swrdswrd 14611 swrdccatin2 14635 pfxccatin12lem2c 14636 pfxccatpfx2 14643 swrds2m 14848 mertenslem1 15791 reumodprminv 16716 prmgaplcmlem1 16963 structfn 17067 strleun 17068 cpmadugsumlemF 22761 ply1termlem 26106 dvply1 26189 ppisval2 27013 ppiltx 27085 chtlepsi 27115 chtublem 27120 chpub 27129 gausslemma2dlem3 27277 2lgslem1a 27300 chtppilimlem1 27382 pntlemq 27510 pntlemf 27514 axlowdimlem16 28902 axlowdimlem17 28903 axlowdim 28906 cyclnumvtx 29745 crctcshwlkn0lem3 29757 swrdrndisj 32899 esumpmono 34046 ballotlem2 34457 ballotlemfc0 34461 ballotlemfcc 34462 fsum2dsub 34575 chtvalz 34597 poimirlem1 37601 poimirlem2 37602 poimirlem4 37604 poimirlem6 37606 poimirlem7 37607 poimirlem15 37615 poimirlem16 37616 poimirlem19 37619 poimirlem20 37620 poimirlem23 37623 poimirlem27 37627 fdc 37725 jm2.23 42969 stoweidlem11 45992 elaa2lem 46214 iccpartgel 47413 |
| Copyright terms: Public domain | W3C validator |