| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13481 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 3 | uztrn 12811 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 5 | elfzuz3 13482 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 7 | elfzuzb 13479 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 8 | 4, 6, 7 | sylanbrc 583 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 9 | 8 | ex 412 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
| 10 | 9 | ssrdv 3952 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 ℤ≥cuz 12793 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-neg 11408 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: fzssnn 13529 fzp1ss 13536 fzdif1 13566 ige2m1fz 13578 fzoss1 13647 fzossnn0 13651 sermono 13999 seqsplit 14000 seqf1olem2 14007 seqz 14015 seqcoll2 14430 swrdswrd 14670 swrdccatin2 14694 pfxccatin12lem2c 14695 pfxccatpfx2 14702 swrds2m 14907 mertenslem1 15850 reumodprminv 16775 prmgaplcmlem1 17022 structfn 17126 strleun 17127 cpmadugsumlemF 22763 ply1termlem 26108 dvply1 26191 ppisval2 27015 ppiltx 27087 chtlepsi 27117 chtublem 27122 chpub 27131 gausslemma2dlem3 27279 2lgslem1a 27302 chtppilimlem1 27384 pntlemq 27512 pntlemf 27516 axlowdimlem16 28884 axlowdimlem17 28885 axlowdim 28888 cyclnumvtx 29730 crctcshwlkn0lem3 29742 swrdrndisj 32879 esumpmono 34069 ballotlem2 34480 ballotlemfc0 34484 ballotlemfcc 34485 fsum2dsub 34598 chtvalz 34620 poimirlem1 37615 poimirlem2 37616 poimirlem4 37618 poimirlem6 37620 poimirlem7 37621 poimirlem15 37629 poimirlem16 37630 poimirlem19 37633 poimirlem20 37634 poimirlem23 37637 poimirlem27 37641 fdc 37739 jm2.23 42985 stoweidlem11 46009 elaa2lem 46231 iccpartgel 47430 |
| Copyright terms: Public domain | W3C validator |