| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzss1 | Structured version Visualization version GIF version | ||
| Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13488 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
| 2 | id 22 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
| 3 | uztrn 12818 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 4 | 1, 2, 3 | syl2anr 597 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 5 | elfzuz3 13489 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
| 6 | 5 | adantl 481 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
| 7 | elfzuzb 13486 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
| 8 | 4, 6, 7 | sylanbrc 583 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 9 | 8 | ex 412 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
| 10 | 9 | ssrdv 3955 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 ℤ≥cuz 12800 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-neg 11415 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fzssnn 13536 fzp1ss 13543 fzdif1 13573 ige2m1fz 13585 fzoss1 13654 fzossnn0 13658 sermono 14006 seqsplit 14007 seqf1olem2 14014 seqz 14022 seqcoll2 14437 swrdswrd 14677 swrdccatin2 14701 pfxccatin12lem2c 14702 pfxccatpfx2 14709 swrds2m 14914 mertenslem1 15857 reumodprminv 16782 prmgaplcmlem1 17029 structfn 17133 strleun 17134 cpmadugsumlemF 22770 ply1termlem 26115 dvply1 26198 ppisval2 27022 ppiltx 27094 chtlepsi 27124 chtublem 27129 chpub 27138 gausslemma2dlem3 27286 2lgslem1a 27309 chtppilimlem1 27391 pntlemq 27519 pntlemf 27523 axlowdimlem16 28891 axlowdimlem17 28892 axlowdim 28895 cyclnumvtx 29737 crctcshwlkn0lem3 29749 swrdrndisj 32886 esumpmono 34076 ballotlem2 34487 ballotlemfc0 34491 ballotlemfcc 34492 fsum2dsub 34605 chtvalz 34627 poimirlem1 37622 poimirlem2 37623 poimirlem4 37625 poimirlem6 37627 poimirlem7 37628 poimirlem15 37636 poimirlem16 37637 poimirlem19 37640 poimirlem20 37641 poimirlem23 37644 poimirlem27 37648 fdc 37746 jm2.23 42992 stoweidlem11 46016 elaa2lem 46238 iccpartgel 47434 |
| Copyright terms: Public domain | W3C validator |