MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzss1 Structured version   Visualization version   GIF version

Theorem fzss1 13458
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))

Proof of Theorem fzss1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13415 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
2 id 22 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ (ℤ𝑀))
3 uztrn 12745 . . . . 5 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
41, 2, 3syl2anr 597 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
5 elfzuz3 13416 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
65adantl 481 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7 elfzuzb 13413 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑘)))
84, 6, 7sylanbrc 583 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
98ex 412 . 2 (𝐾 ∈ (ℤ𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁)))
109ssrdv 3935 1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wss 3897  cfv 6476  (class class class)co 7341  cuz 12727  ...cfz 13402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-pre-lttri 11075  ax-pre-lttrn 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-neg 11342  df-z 12464  df-uz 12728  df-fz 13403
This theorem is referenced by:  fzssnn  13463  fzp1ss  13470  fzdif1  13500  ige2m1fz  13512  fzoss1  13581  fzossnn0  13585  sermono  13936  seqsplit  13937  seqf1olem2  13944  seqz  13952  seqcoll2  14367  swrdswrd  14607  swrdccatin2  14631  pfxccatin12lem2c  14632  pfxccatpfx2  14639  swrds2m  14843  mertenslem1  15786  reumodprminv  16711  prmgaplcmlem1  16958  structfn  17062  strleun  17063  cpmadugsumlemF  22786  ply1termlem  26130  dvply1  26213  ppisval2  27037  ppiltx  27109  chtlepsi  27139  chtublem  27144  chpub  27153  gausslemma2dlem3  27301  2lgslem1a  27324  chtppilimlem1  27406  pntlemq  27534  pntlemf  27538  axlowdimlem16  28930  axlowdimlem17  28931  axlowdim  28934  cyclnumvtx  29773  crctcshwlkn0lem3  29785  swrdrndisj  32930  esumpmono  34084  ballotlem2  34494  ballotlemfc0  34498  ballotlemfcc  34499  fsum2dsub  34612  chtvalz  34634  poimirlem1  37661  poimirlem2  37662  poimirlem4  37664  poimirlem6  37666  poimirlem7  37667  poimirlem15  37675  poimirlem16  37676  poimirlem19  37679  poimirlem20  37680  poimirlem23  37683  poimirlem27  37687  fdc  37785  jm2.23  43029  stoweidlem11  46049  elaa2lem  46271  iccpartgel  47460
  Copyright terms: Public domain W3C validator