MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzss1 Structured version   Visualization version   GIF version

Theorem fzss1 13295
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))

Proof of Theorem fzss1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13252 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
2 id 22 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ (ℤ𝑀))
3 uztrn 12600 . . . . 5 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
41, 2, 3syl2anr 597 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
5 elfzuz3 13253 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
65adantl 482 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7 elfzuzb 13250 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑘)))
84, 6, 7sylanbrc 583 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
98ex 413 . 2 (𝐾 ∈ (ℤ𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁)))
109ssrdv 3927 1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wss 3887  cfv 6433  (class class class)co 7275  cuz 12582  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fzssnn  13300  fzp1ss  13307  ige2m1fz  13346  fzoss1  13414  fzossnn0  13418  sermono  13755  seqsplit  13756  seqf1olem2  13763  seqz  13771  seqcoll2  14179  swrdswrd  14418  swrdccatin2  14442  pfxccatin12lem2c  14443  pfxccatpfx2  14450  swrds2m  14654  mertenslem1  15596  reumodprminv  16505  prmgaplcmlem1  16752  structfn  16857  strleun  16858  cpmadugsumlemF  22025  ply1termlem  25364  dvply1  25444  ppisval2  26254  ppiltx  26326  chtlepsi  26354  chtublem  26359  chpub  26368  gausslemma2dlem3  26516  2lgslem1a  26539  chtppilimlem1  26621  pntlemq  26749  pntlemf  26753  axlowdimlem16  27325  axlowdimlem17  27326  axlowdim  27329  crctcshwlkn0lem3  28177  swrdrndisj  31229  esumpmono  32047  ballotlem2  32455  ballotlemfc0  32459  ballotlemfcc  32460  fsum2dsub  32587  chtvalz  32609  poimirlem1  35778  poimirlem2  35779  poimirlem4  35781  poimirlem6  35783  poimirlem7  35784  poimirlem15  35792  poimirlem16  35793  poimirlem19  35796  poimirlem20  35797  poimirlem23  35800  poimirlem27  35804  fdc  35903  jm2.23  40818  stoweidlem11  43552  elaa2lem  43774  iccpartgel  44881
  Copyright terms: Public domain W3C validator