MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzss1 Structured version   Visualization version   GIF version

Theorem fzss1 13500
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
fzss1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))

Proof of Theorem fzss1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elfzuz 13457 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ𝐾))
2 id 22 . . . . 5 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ (ℤ𝑀))
3 uztrn 12787 . . . . 5 ((𝑘 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
41, 2, 3syl2anr 597 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ𝑀))
5 elfzuz3 13458 . . . . 5 (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ𝑘))
65adantl 481 . . . 4 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ𝑘))
7 elfzuzb 13455 . . . 4 (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑘)))
84, 6, 7sylanbrc 583 . . 3 ((𝐾 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
98ex 412 . 2 (𝐾 ∈ (ℤ𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁)))
109ssrdv 3949 1 (𝐾 ∈ (ℤ𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  cuz 12769  ...cfz 13444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-fz 13445
This theorem is referenced by:  fzssnn  13505  fzp1ss  13512  fzdif1  13542  ige2m1fz  13554  fzoss1  13623  fzossnn0  13627  sermono  13975  seqsplit  13976  seqf1olem2  13983  seqz  13991  seqcoll2  14406  swrdswrd  14646  swrdccatin2  14670  pfxccatin12lem2c  14671  pfxccatpfx2  14678  swrds2m  14883  mertenslem1  15826  reumodprminv  16751  prmgaplcmlem1  16998  structfn  17102  strleun  17103  cpmadugsumlemF  22739  ply1termlem  26084  dvply1  26167  ppisval2  26991  ppiltx  27063  chtlepsi  27093  chtublem  27098  chpub  27107  gausslemma2dlem3  27255  2lgslem1a  27278  chtppilimlem1  27360  pntlemq  27488  pntlemf  27492  axlowdimlem16  28860  axlowdimlem17  28861  axlowdim  28864  cyclnumvtx  29703  crctcshwlkn0lem3  29715  swrdrndisj  32852  esumpmono  34042  ballotlem2  34453  ballotlemfc0  34457  ballotlemfcc  34458  fsum2dsub  34571  chtvalz  34593  poimirlem1  37588  poimirlem2  37589  poimirlem4  37591  poimirlem6  37593  poimirlem7  37594  poimirlem15  37602  poimirlem16  37603  poimirlem19  37606  poimirlem20  37607  poimirlem23  37610  poimirlem27  37614  fdc  37712  jm2.23  42958  stoweidlem11  45982  elaa2lem  46204  iccpartgel  47403
  Copyright terms: Public domain W3C validator