![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzss1 | Structured version Visualization version GIF version |
Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 28-Sep-2005.) (Proof shortened by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
fzss1 | ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz 13438 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (ℤ≥‘𝐾)) | |
2 | id 22 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → 𝐾 ∈ (ℤ≥‘𝑀)) | |
3 | uztrn 12782 | . . . . 5 ⊢ ((𝑘 ∈ (ℤ≥‘𝐾) ∧ 𝐾 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
4 | 1, 2, 3 | syl2anr 598 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
5 | elfzuz3 13439 | . . . . 5 ⊢ (𝑘 ∈ (𝐾...𝑁) → 𝑁 ∈ (ℤ≥‘𝑘)) | |
6 | 5 | adantl 483 | . . . 4 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑁 ∈ (ℤ≥‘𝑘)) |
7 | elfzuzb 13436 | . . . 4 ⊢ (𝑘 ∈ (𝑀...𝑁) ↔ (𝑘 ∈ (ℤ≥‘𝑀) ∧ 𝑁 ∈ (ℤ≥‘𝑘))) | |
8 | 4, 6, 7 | sylanbrc 584 | . . 3 ⊢ ((𝐾 ∈ (ℤ≥‘𝑀) ∧ 𝑘 ∈ (𝐾...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
9 | 8 | ex 414 | . 2 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝐾...𝑁) → 𝑘 ∈ (𝑀...𝑁))) |
10 | 9 | ssrdv 3951 | 1 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾...𝑁) ⊆ (𝑀...𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3911 ‘cfv 6497 (class class class)co 7358 ℤ≥cuz 12764 ...cfz 13425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11108 ax-resscn 11109 ax-pre-lttri 11126 ax-pre-lttrn 11127 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 df-neg 11389 df-z 12501 df-uz 12765 df-fz 13426 |
This theorem is referenced by: fzssnn 13486 fzp1ss 13493 ige2m1fz 13532 fzoss1 13600 fzossnn0 13604 sermono 13941 seqsplit 13942 seqf1olem2 13949 seqz 13957 seqcoll2 14365 swrdswrd 14594 swrdccatin2 14618 pfxccatin12lem2c 14619 pfxccatpfx2 14626 swrds2m 14831 mertenslem1 15770 reumodprminv 16677 prmgaplcmlem1 16924 structfn 17029 strleun 17030 cpmadugsumlemF 22228 ply1termlem 25567 dvply1 25647 ppisval2 26457 ppiltx 26529 chtlepsi 26557 chtublem 26562 chpub 26571 gausslemma2dlem3 26719 2lgslem1a 26742 chtppilimlem1 26824 pntlemq 26952 pntlemf 26956 axlowdimlem16 27909 axlowdimlem17 27910 axlowdim 27913 crctcshwlkn0lem3 28760 swrdrndisj 31814 esumpmono 32681 ballotlem2 33091 ballotlemfc0 33095 ballotlemfcc 33096 fsum2dsub 33223 chtvalz 33245 poimirlem1 36082 poimirlem2 36083 poimirlem4 36085 poimirlem6 36087 poimirlem7 36088 poimirlem15 36096 poimirlem16 36097 poimirlem19 36100 poimirlem20 36101 poimirlem23 36104 poimirlem27 36108 fdc 36207 jm2.23 41323 stoweidlem11 44259 elaa2lem 44481 iccpartgel 45628 |
Copyright terms: Public domain | W3C validator |