![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsnsub | Structured version Visualization version GIF version |
Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015.) |
Ref | Expression |
---|---|
lspsnsub.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnsub.s | ⊢ − = (-g‘𝑊) |
lspsnsub.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspsnsub.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspsnsub.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspsnsub.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lspsnsub | ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspsnsub.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspsnsub.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | lspsnsub.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
4 | lspsnsub.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | lspsnsub.s | . . . . 5 ⊢ − = (-g‘𝑊) | |
6 | 4, 5 | lmodvsubcl 19373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) ∈ 𝑉) |
7 | 1, 2, 3, 6 | syl3anc 1364 | . . 3 ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑉) |
8 | eqid 2797 | . . . 4 ⊢ (invg‘𝑊) = (invg‘𝑊) | |
9 | lspsnsub.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 4, 8, 9 | lspsnneg 19472 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 − 𝑌) ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘(𝑋 − 𝑌))}) = (𝑁‘{(𝑋 − 𝑌)})) |
11 | 1, 7, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘(𝑋 − 𝑌))}) = (𝑁‘{(𝑋 − 𝑌)})) |
12 | lmodgrp 19335 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
13 | 1, 12 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Grp) |
14 | 4, 5, 8 | grpinvsub 17942 | . . . . 5 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝑊)‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
15 | 13, 2, 3, 14 | syl3anc 1364 | . . . 4 ⊢ (𝜑 → ((invg‘𝑊)‘(𝑋 − 𝑌)) = (𝑌 − 𝑋)) |
16 | 15 | sneqd 4490 | . . 3 ⊢ (𝜑 → {((invg‘𝑊)‘(𝑋 − 𝑌))} = {(𝑌 − 𝑋)}) |
17 | 16 | fveq2d 6549 | . 2 ⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘(𝑋 − 𝑌))}) = (𝑁‘{(𝑌 − 𝑋)})) |
18 | 11, 17 | eqtr3d 2835 | 1 ⊢ (𝜑 → (𝑁‘{(𝑋 − 𝑌)}) = (𝑁‘{(𝑌 − 𝑋)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 {csn 4478 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 Grpcgrp 17865 invgcminusg 17866 -gcsg 17867 LModclmod 19328 LSpanclspn 19437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-om 7444 df-1st 7552 df-2nd 7553 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-er 8146 df-en 8365 df-dom 8366 df-sdom 8367 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-plusg 16411 df-0g 16548 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mgp 18934 df-ur 18946 df-ring 18993 df-lmod 19330 df-lss 19398 df-lsp 19438 |
This theorem is referenced by: baerlem3lem2 38398 baerlem5blem2 38400 mapdheq2 38417 |
Copyright terms: Public domain | W3C validator |