Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnsub Structured version   Visualization version   GIF version

Theorem lspsnsub 19775
 Description: Swapping subtraction order does not change the span of a singleton. (Contributed by NM, 4-Apr-2015.)
Hypotheses
Ref Expression
lspsnsub.v 𝑉 = (Base‘𝑊)
lspsnsub.s = (-g𝑊)
lspsnsub.n 𝑁 = (LSpan‘𝑊)
lspsnsub.w (𝜑𝑊 ∈ LMod)
lspsnsub.x (𝜑𝑋𝑉)
lspsnsub.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lspsnsub (𝜑 → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑌 𝑋)}))

Proof of Theorem lspsnsub
StepHypRef Expression
1 lspsnsub.w . . 3 (𝜑𝑊 ∈ LMod)
2 lspsnsub.x . . . 4 (𝜑𝑋𝑉)
3 lspsnsub.y . . . 4 (𝜑𝑌𝑉)
4 lspsnsub.v . . . . 5 𝑉 = (Base‘𝑊)
5 lspsnsub.s . . . . 5 = (-g𝑊)
64, 5lmodvsubcl 19675 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
71, 2, 3, 6syl3anc 1368 . . 3 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
8 eqid 2798 . . . 4 (invg𝑊) = (invg𝑊)
9 lspsnsub.n . . . 4 𝑁 = (LSpan‘𝑊)
104, 8, 9lspsnneg 19774 . . 3 ((𝑊 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑁‘{((invg𝑊)‘(𝑋 𝑌))}) = (𝑁‘{(𝑋 𝑌)}))
111, 7, 10syl2anc 587 . 2 (𝜑 → (𝑁‘{((invg𝑊)‘(𝑋 𝑌))}) = (𝑁‘{(𝑋 𝑌)}))
12 lmodgrp 19637 . . . . . 6 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
131, 12syl 17 . . . . 5 (𝜑𝑊 ∈ Grp)
144, 5, 8grpinvsub 18176 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((invg𝑊)‘(𝑋 𝑌)) = (𝑌 𝑋))
1513, 2, 3, 14syl3anc 1368 . . . 4 (𝜑 → ((invg𝑊)‘(𝑋 𝑌)) = (𝑌 𝑋))
1615sneqd 4537 . . 3 (𝜑 → {((invg𝑊)‘(𝑋 𝑌))} = {(𝑌 𝑋)})
1716fveq2d 6649 . 2 (𝜑 → (𝑁‘{((invg𝑊)‘(𝑋 𝑌))}) = (𝑁‘{(𝑌 𝑋)}))
1811, 17eqtr3d 2835 1 (𝜑 → (𝑁‘{(𝑋 𝑌)}) = (𝑁‘{(𝑌 𝑋)}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  {csn 4525  ‘cfv 6324  (class class class)co 7135  Basecbs 16477  Grpcgrp 18097  invgcminusg 18098  -gcsg 18099  LModclmod 19630  LSpanclspn 19739 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-nn 11628  df-2 11690  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mgp 19236  df-ur 19248  df-ring 19295  df-lmod 19632  df-lss 19700  df-lsp 19740 This theorem is referenced by:  baerlem3lem2  39022  baerlem5blem2  39024  mapdheq2  39041
 Copyright terms: Public domain W3C validator