![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem14 | Structured version Visualization version GIF version |
Description: Lemma for mapdpg 41090. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
mapdpglem.h | β’ π» = (LHypβπΎ) |
mapdpglem.m | β’ π = ((mapdβπΎ)βπ) |
mapdpglem.u | β’ π = ((DVecHβπΎ)βπ) |
mapdpglem.v | β’ π = (Baseβπ) |
mapdpglem.s | β’ β = (-gβπ) |
mapdpglem.n | β’ π = (LSpanβπ) |
mapdpglem.c | β’ πΆ = ((LCDualβπΎ)βπ) |
mapdpglem.k | β’ (π β (πΎ β HL β§ π β π»)) |
mapdpglem.x | β’ (π β π β π) |
mapdpglem.y | β’ (π β π β π) |
mapdpglem1.p | β’ β = (LSSumβπΆ) |
mapdpglem2.j | β’ π½ = (LSpanβπΆ) |
mapdpglem3.f | β’ πΉ = (BaseβπΆ) |
mapdpglem3.te | β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) |
mapdpglem3.a | β’ π΄ = (Scalarβπ) |
mapdpglem3.b | β’ π΅ = (Baseβπ΄) |
mapdpglem3.t | β’ Β· = ( Β·π βπΆ) |
mapdpglem3.r | β’ π = (-gβπΆ) |
mapdpglem3.g | β’ (π β πΊ β πΉ) |
mapdpglem3.e | β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) |
mapdpglem4.q | β’ π = (0gβπ) |
mapdpglem.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdpglem4.jt | β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) |
mapdpglem4.z | β’ 0 = (0gβπ΄) |
mapdpglem4.g4 | β’ (π β π β π΅) |
mapdpglem4.z4 | β’ (π β π§ β (πβ(πβ{π}))) |
mapdpglem4.t4 | β’ (π β π‘ = ((π Β· πΊ)π π§)) |
mapdpglem4.xn | β’ (π β π β π) |
mapdpglem12.yn | β’ (π β π β π) |
mapdpglem12.g0 | β’ (π β π§ = (0gβπΆ)) |
Ref | Expression |
---|---|
mapdpglem14 | β’ (π β π β (πβ{π})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdpglem.h | . . . 4 β’ π» = (LHypβπΎ) | |
2 | mapdpglem.u | . . . 4 β’ π = ((DVecHβπΎ)βπ) | |
3 | mapdpglem.k | . . . 4 β’ (π β (πΎ β HL β§ π β π»)) | |
4 | 1, 2, 3 | dvhlmod 40494 | . . 3 β’ (π β π β LMod) |
5 | mapdpglem.y | . . 3 β’ (π β π β π) | |
6 | mapdpglem.x | . . 3 β’ (π β π β π) | |
7 | mapdpglem.v | . . . 4 β’ π = (Baseβπ) | |
8 | eqid 2726 | . . . 4 β’ (+gβπ) = (+gβπ) | |
9 | mapdpglem.s | . . . 4 β’ β = (-gβπ) | |
10 | 7, 8, 9 | lmodvnpcan 20762 | . . 3 β’ ((π β LMod β§ π β π β§ π β π) β ((π β π)(+gβπ)π) = π) |
11 | 4, 5, 6, 10 | syl3anc 1368 | . 2 β’ (π β ((π β π)(+gβπ)π) = π) |
12 | eqid 2726 | . . . . 5 β’ (LSubSpβπ) = (LSubSpβπ) | |
13 | mapdpglem.n | . . . . 5 β’ π = (LSpanβπ) | |
14 | 7, 12, 13 | lspsncl 20824 | . . . 4 β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
15 | 4, 6, 14 | syl2anc 583 | . . 3 β’ (π β (πβ{π}) β (LSubSpβπ)) |
16 | lmodgrp 20713 | . . . . . 6 β’ (π β LMod β π β Grp) | |
17 | 4, 16 | syl 17 | . . . . 5 β’ (π β π β Grp) |
18 | eqid 2726 | . . . . . 6 β’ (invgβπ) = (invgβπ) | |
19 | 7, 9, 18 | grpinvsub 18950 | . . . . 5 β’ ((π β Grp β§ π β π β§ π β π) β ((invgβπ)β(π β π)) = (π β π)) |
20 | 17, 6, 5, 19 | syl3anc 1368 | . . . 4 β’ (π β ((invgβπ)β(π β π)) = (π β π)) |
21 | mapdpglem.m | . . . . . . 7 β’ π = ((mapdβπΎ)βπ) | |
22 | mapdpglem.c | . . . . . . 7 β’ πΆ = ((LCDualβπΎ)βπ) | |
23 | mapdpglem1.p | . . . . . . 7 β’ β = (LSSumβπΆ) | |
24 | mapdpglem2.j | . . . . . . 7 β’ π½ = (LSpanβπΆ) | |
25 | mapdpglem3.f | . . . . . . 7 β’ πΉ = (BaseβπΆ) | |
26 | mapdpglem3.te | . . . . . . 7 β’ (π β π‘ β ((πβ(πβ{π})) β (πβ(πβ{π})))) | |
27 | mapdpglem3.a | . . . . . . 7 β’ π΄ = (Scalarβπ) | |
28 | mapdpglem3.b | . . . . . . 7 β’ π΅ = (Baseβπ΄) | |
29 | mapdpglem3.t | . . . . . . 7 β’ Β· = ( Β·π βπΆ) | |
30 | mapdpglem3.r | . . . . . . 7 β’ π = (-gβπΆ) | |
31 | mapdpglem3.g | . . . . . . 7 β’ (π β πΊ β πΉ) | |
32 | mapdpglem3.e | . . . . . . 7 β’ (π β (πβ(πβ{π})) = (π½β{πΊ})) | |
33 | mapdpglem4.q | . . . . . . 7 β’ π = (0gβπ) | |
34 | mapdpglem.ne | . . . . . . 7 β’ (π β (πβ{π}) β (πβ{π})) | |
35 | mapdpglem4.jt | . . . . . . 7 β’ (π β (πβ(πβ{(π β π)})) = (π½β{π‘})) | |
36 | mapdpglem4.z | . . . . . . 7 β’ 0 = (0gβπ΄) | |
37 | mapdpglem4.g4 | . . . . . . 7 β’ (π β π β π΅) | |
38 | mapdpglem4.z4 | . . . . . . 7 β’ (π β π§ β (πβ(πβ{π}))) | |
39 | mapdpglem4.t4 | . . . . . . 7 β’ (π β π‘ = ((π Β· πΊ)π π§)) | |
40 | mapdpglem4.xn | . . . . . . 7 β’ (π β π β π) | |
41 | mapdpglem12.yn | . . . . . . 7 β’ (π β π β π) | |
42 | mapdpglem12.g0 | . . . . . . 7 β’ (π β π§ = (0gβπΆ)) | |
43 | 1, 21, 2, 7, 9, 13, 22, 3, 6, 5, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42 | mapdpglem13 41068 | . . . . . 6 β’ (π β (πβ{(π β π)}) β (πβ{π})) |
44 | 7, 9 | lmodvsubcl 20753 | . . . . . . . 8 β’ ((π β LMod β§ π β π β§ π β π) β (π β π) β π) |
45 | 4, 6, 5, 44 | syl3anc 1368 | . . . . . . 7 β’ (π β (π β π) β π) |
46 | 7, 13 | lspsnid 20840 | . . . . . . 7 β’ ((π β LMod β§ (π β π) β π) β (π β π) β (πβ{(π β π)})) |
47 | 4, 45, 46 | syl2anc 583 | . . . . . 6 β’ (π β (π β π) β (πβ{(π β π)})) |
48 | 43, 47 | sseldd 3978 | . . . . 5 β’ (π β (π β π) β (πβ{π})) |
49 | 12, 18 | lssvnegcl 20803 | . . . . 5 β’ ((π β LMod β§ (πβ{π}) β (LSubSpβπ) β§ (π β π) β (πβ{π})) β ((invgβπ)β(π β π)) β (πβ{π})) |
50 | 4, 15, 48, 49 | syl3anc 1368 | . . . 4 β’ (π β ((invgβπ)β(π β π)) β (πβ{π})) |
51 | 20, 50 | eqeltrrd 2828 | . . 3 β’ (π β (π β π) β (πβ{π})) |
52 | 7, 13 | lspsnid 20840 | . . . 4 β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
53 | 4, 6, 52 | syl2anc 583 | . . 3 β’ (π β π β (πβ{π})) |
54 | 8, 12 | lssvacl 20790 | . . 3 β’ (((π β LMod β§ (πβ{π}) β (LSubSpβπ)) β§ ((π β π) β (πβ{π}) β§ π β (πβ{π}))) β ((π β π)(+gβπ)π) β (πβ{π})) |
55 | 4, 15, 51, 53, 54 | syl22anc 836 | . 2 β’ (π β ((π β π)(+gβπ)π) β (πβ{π})) |
56 | 11, 55 | eqeltrrd 2828 | 1 β’ (π β π β (πβ{π})) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β wne 2934 {csn 4623 βcfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 Scalarcsca 17209 Β·π cvsca 17210 0gc0g 17394 Grpcgrp 18863 invgcminusg 18864 -gcsg 18865 LSSumclsm 19554 LModclmod 20706 LSubSpclss 20778 LSpanclspn 20818 HLchlt 38733 LHypclh 39368 DVecHcdvh 40462 LCDualclcd 40970 mapdcmpd 41008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-riotaBAD 38336 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-undef 8259 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-sca 17222 df-vsca 17223 df-0g 17396 df-mre 17539 df-mrc 17540 df-acs 17542 df-proset 18260 df-poset 18278 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-grp 18866 df-minusg 18867 df-sbg 18868 df-subg 19050 df-cntz 19233 df-oppg 19262 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 df-oppr 20236 df-dvdsr 20259 df-unit 20260 df-invr 20290 df-dvr 20303 df-drng 20589 df-lmod 20708 df-lss 20779 df-lsp 20819 df-lvec 20951 df-lsatoms 38359 df-lshyp 38360 df-lcv 38402 df-lfl 38441 df-lkr 38469 df-ldual 38507 df-oposet 38559 df-ol 38561 df-oml 38562 df-covers 38649 df-ats 38650 df-atl 38681 df-cvlat 38705 df-hlat 38734 df-llines 38882 df-lplanes 38883 df-lvols 38884 df-lines 38885 df-psubsp 38887 df-pmap 38888 df-padd 39180 df-lhyp 39372 df-laut 39373 df-ldil 39488 df-ltrn 39489 df-trl 39543 df-tgrp 40127 df-tendo 40139 df-edring 40141 df-dveca 40387 df-disoa 40413 df-dvech 40463 df-dib 40523 df-dic 40557 df-dih 40613 df-doch 40732 df-djh 40779 df-lcdual 40971 df-mapd 41009 |
This theorem is referenced by: mapdpglem15 41070 |
Copyright terms: Public domain | W3C validator |