Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem14 Structured version   Visualization version   GIF version

Theorem mapdpglem14 41668
Description: Lemma for mapdpg 41689. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem12.g0 (𝜑𝑧 = (0g𝐶))
Assertion
Ref Expression
mapdpglem14 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem14
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41093 . . 3 (𝜑𝑈 ∈ LMod)
5 mapdpglem.y . . 3 (𝜑𝑌𝑉)
6 mapdpglem.x . . 3 (𝜑𝑋𝑉)
7 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2735 . . . 4 (+g𝑈) = (+g𝑈)
9 mapdpglem.s . . . 4 = (-g𝑈)
107, 8, 9lmodvnpcan 20931 . . 3 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
114, 5, 6, 10syl3anc 1370 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
12 eqid 2735 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
147, 12, 13lspsncl 20993 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
154, 6, 14syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
16 lmodgrp 20882 . . . . . 6 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
174, 16syl 17 . . . . 5 (𝜑𝑈 ∈ Grp)
18 eqid 2735 . . . . . 6 (invg𝑈) = (invg𝑈)
197, 9, 18grpinvsub 19053 . . . . 5 ((𝑈 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
2017, 6, 5, 19syl3anc 1370 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
21 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
22 mapdpglem.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
23 mapdpglem1.p . . . . . . 7 = (LSSum‘𝐶)
24 mapdpglem2.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
25 mapdpglem3.f . . . . . . 7 𝐹 = (Base‘𝐶)
26 mapdpglem3.te . . . . . . 7 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
27 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
28 mapdpglem3.b . . . . . . 7 𝐵 = (Base‘𝐴)
29 mapdpglem3.t . . . . . . 7 · = ( ·𝑠𝐶)
30 mapdpglem3.r . . . . . . 7 𝑅 = (-g𝐶)
31 mapdpglem3.g . . . . . . 7 (𝜑𝐺𝐹)
32 mapdpglem3.e . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
33 mapdpglem4.q . . . . . . 7 𝑄 = (0g𝑈)
34 mapdpglem.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
35 mapdpglem4.jt . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
36 mapdpglem4.z . . . . . . 7 0 = (0g𝐴)
37 mapdpglem4.g4 . . . . . . 7 (𝜑𝑔𝐵)
38 mapdpglem4.z4 . . . . . . 7 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
39 mapdpglem4.t4 . . . . . . 7 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
40 mapdpglem4.xn . . . . . . 7 (𝜑𝑋𝑄)
41 mapdpglem12.yn . . . . . . 7 (𝜑𝑌𝑄)
42 mapdpglem12.g0 . . . . . . 7 (𝜑𝑧 = (0g𝐶))
431, 21, 2, 7, 9, 13, 22, 3, 6, 5, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42mapdpglem13 41667 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
447, 9lmodvsubcl 20922 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
454, 6, 5, 44syl3anc 1370 . . . . . . 7 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
467, 13lspsnid 21009 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
474, 45, 46syl2anc 584 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
4843, 47sseldd 3996 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{𝑋}))
4912, 18lssvnegcl 20972 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑋 𝑌) ∈ (𝑁‘{𝑋})) → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
504, 15, 48, 49syl3anc 1370 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
5120, 50eqeltrrd 2840 . . 3 (𝜑 → (𝑌 𝑋) ∈ (𝑁‘{𝑋}))
527, 13lspsnid 21009 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
534, 6, 52syl2anc 584 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
548, 12lssvacl 20959 . . 3 (((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) ∧ ((𝑌 𝑋) ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
554, 15, 51, 53, 54syl22anc 839 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
5611, 55eqeltrrd 2840 1 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  -gcsg 18966  LSSumclsm 19667  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  HLchlt 39332  LHypclh 39967  DVecHcdvh 41061  LCDualclcd 41569  mapdcmpd 41607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-undef 8297  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17488  df-mre 17631  df-mrc 17632  df-acs 17634  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-subg 19154  df-cntz 19348  df-oppg 19377  df-lsm 19669  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-dvr 20418  df-nzr 20530  df-rlreg 20711  df-domn 20712  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lshyp 38959  df-lcv 39001  df-lfl 39040  df-lkr 39068  df-ldual 39106  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726  df-tendo 40738  df-edring 40740  df-dveca 40986  df-disoa 41012  df-dvech 41062  df-dib 41122  df-dic 41156  df-dih 41212  df-doch 41331  df-djh 41378  df-lcdual 41570  df-mapd 41608
This theorem is referenced by:  mapdpglem15  41669
  Copyright terms: Public domain W3C validator