Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem14 Structured version   Visualization version   GIF version

Theorem mapdpglem14 41667
Description: Lemma for mapdpg 41688. (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem12.g0 (𝜑𝑧 = (0g𝐶))
Assertion
Ref Expression
mapdpglem14 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem14
StepHypRef Expression
1 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpglem.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlmod 41092 . . 3 (𝜑𝑈 ∈ LMod)
5 mapdpglem.y . . 3 (𝜑𝑌𝑉)
6 mapdpglem.x . . 3 (𝜑𝑋𝑉)
7 mapdpglem.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
9 mapdpglem.s . . . 4 = (-g𝑈)
107, 8, 9lmodvnpcan 20837 . . 3 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑋𝑉) → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
114, 5, 6, 10syl3anc 1373 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) = 𝑌)
12 eqid 2729 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
13 mapdpglem.n . . . . 5 𝑁 = (LSpan‘𝑈)
147, 12, 13lspsncl 20898 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
154, 6, 14syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
16 lmodgrp 20788 . . . . . 6 (𝑈 ∈ LMod → 𝑈 ∈ Grp)
174, 16syl 17 . . . . 5 (𝜑𝑈 ∈ Grp)
18 eqid 2729 . . . . . 6 (invg𝑈) = (invg𝑈)
197, 9, 18grpinvsub 18919 . . . . 5 ((𝑈 ∈ Grp ∧ 𝑋𝑉𝑌𝑉) → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
2017, 6, 5, 19syl3anc 1373 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) = (𝑌 𝑋))
21 mapdpglem.m . . . . . . 7 𝑀 = ((mapd‘𝐾)‘𝑊)
22 mapdpglem.c . . . . . . 7 𝐶 = ((LCDual‘𝐾)‘𝑊)
23 mapdpglem1.p . . . . . . 7 = (LSSum‘𝐶)
24 mapdpglem2.j . . . . . . 7 𝐽 = (LSpan‘𝐶)
25 mapdpglem3.f . . . . . . 7 𝐹 = (Base‘𝐶)
26 mapdpglem3.te . . . . . . 7 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
27 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
28 mapdpglem3.b . . . . . . 7 𝐵 = (Base‘𝐴)
29 mapdpglem3.t . . . . . . 7 · = ( ·𝑠𝐶)
30 mapdpglem3.r . . . . . . 7 𝑅 = (-g𝐶)
31 mapdpglem3.g . . . . . . 7 (𝜑𝐺𝐹)
32 mapdpglem3.e . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
33 mapdpglem4.q . . . . . . 7 𝑄 = (0g𝑈)
34 mapdpglem.ne . . . . . . 7 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
35 mapdpglem4.jt . . . . . . 7 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
36 mapdpglem4.z . . . . . . 7 0 = (0g𝐴)
37 mapdpglem4.g4 . . . . . . 7 (𝜑𝑔𝐵)
38 mapdpglem4.z4 . . . . . . 7 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
39 mapdpglem4.t4 . . . . . . 7 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
40 mapdpglem4.xn . . . . . . 7 (𝜑𝑋𝑄)
41 mapdpglem12.yn . . . . . . 7 (𝜑𝑌𝑄)
42 mapdpglem12.g0 . . . . . . 7 (𝜑𝑧 = (0g𝐶))
431, 21, 2, 7, 9, 13, 22, 3, 6, 5, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42mapdpglem13 41666 . . . . . 6 (𝜑 → (𝑁‘{(𝑋 𝑌)}) ⊆ (𝑁‘{𝑋}))
447, 9lmodvsubcl 20828 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) ∈ 𝑉)
454, 6, 5, 44syl3anc 1373 . . . . . . 7 (𝜑 → (𝑋 𝑌) ∈ 𝑉)
467, 13lspsnid 20914 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝑋 𝑌) ∈ 𝑉) → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
474, 45, 46syl2anc 584 . . . . . 6 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{(𝑋 𝑌)}))
4843, 47sseldd 3938 . . . . 5 (𝜑 → (𝑋 𝑌) ∈ (𝑁‘{𝑋}))
4912, 18lssvnegcl 20877 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈) ∧ (𝑋 𝑌) ∈ (𝑁‘{𝑋})) → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
504, 15, 48, 49syl3anc 1373 . . . 4 (𝜑 → ((invg𝑈)‘(𝑋 𝑌)) ∈ (𝑁‘{𝑋}))
5120, 50eqeltrrd 2829 . . 3 (𝜑 → (𝑌 𝑋) ∈ (𝑁‘{𝑋}))
527, 13lspsnid 20914 . . . 4 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → 𝑋 ∈ (𝑁‘{𝑋}))
534, 6, 52syl2anc 584 . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑋}))
548, 12lssvacl 20864 . . 3 (((𝑈 ∈ LMod ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) ∧ ((𝑌 𝑋) ∈ (𝑁‘{𝑋}) ∧ 𝑋 ∈ (𝑁‘{𝑋}))) → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
554, 15, 51, 53, 54syl22anc 838 . 2 (𝜑 → ((𝑌 𝑋)(+g𝑈)𝑋) ∈ (𝑁‘{𝑋}))
5611, 55eqeltrrd 2829 1 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4579  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  Grpcgrp 18830  invgcminusg 18831  -gcsg 18832  LSSumclsm 19531  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892  HLchlt 39331  LHypclh 39966  DVecHcdvh 41060  LCDualclcd 41568  mapdcmpd 41606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-riotaBAD 38934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-tpos 8166  df-undef 8213  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-0g 17363  df-mre 17506  df-mrc 17507  df-acs 17509  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-p1 18348  df-lat 18356  df-clat 18423  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-oppg 19243  df-lsm 19533  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20240  df-dvdsr 20260  df-unit 20261  df-invr 20291  df-dvr 20304  df-nzr 20416  df-rlreg 20597  df-domn 20598  df-drng 20634  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lvec 21025  df-lsatoms 38957  df-lshyp 38958  df-lcv 39000  df-lfl 39039  df-lkr 39067  df-ldual 39105  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480  df-lplanes 39481  df-lvols 39482  df-lines 39483  df-psubsp 39485  df-pmap 39486  df-padd 39778  df-lhyp 39970  df-laut 39971  df-ldil 40086  df-ltrn 40087  df-trl 40141  df-tgrp 40725  df-tendo 40737  df-edring 40739  df-dveca 40985  df-disoa 41011  df-dvech 41061  df-dib 41121  df-dic 41155  df-dih 41211  df-doch 41330  df-djh 41377  df-lcdual 41569  df-mapd 41607
This theorem is referenced by:  mapdpglem15  41668
  Copyright terms: Public domain W3C validator