Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatj4 Structured version   Visualization version   GIF version

Theorem hlatj4 35182
Description: Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 17309 for atoms. (Contributed by NM, 9-Aug-2012.)
Hypotheses
Ref Expression
hlatjcom.j = (join‘𝐾)
hlatjcom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hlatj4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))

Proof of Theorem hlatj4
StepHypRef Expression
1 hllat 35172 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1127 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝐾 ∈ Lat)
3 simp2l 1241 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃𝐴)
4 eqid 2771 . . . 4 (Base‘𝐾) = (Base‘𝐾)
5 hlatjcom.a . . . 4 𝐴 = (Atoms‘𝐾)
64, 5atbase 35098 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑃 ∈ (Base‘𝐾))
8 simp2r 1242 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄𝐴)
94, 5atbase 35098 . . 3 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
108, 9syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑄 ∈ (Base‘𝐾))
11 simp3l 1243 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅𝐴)
124, 5atbase 35098 . . 3 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑅 ∈ (Base‘𝐾))
14 simp3r 1244 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆𝐴)
154, 5atbase 35098 . . 3 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1614, 15syl 17 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → 𝑆 ∈ (Base‘𝐾))
17 hlatjcom.j . . 3 = (join‘𝐾)
184, 17latj4 17309 . 2 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
192, 7, 10, 13, 16, 18syl122anc 1485 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴)) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑅) (𝑄 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  Basecbs 16064  joincjn 17152  Latclat 17253  Atomscatm 35072  HLchlt 35159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160
This theorem is referenced by:  4atlem4b  35408  4atlem11  35417  dalem2  35469  dalem23  35504  cdleme16c  36089
  Copyright terms: Public domain W3C validator