![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatj4 | Structured version Visualization version GIF version |
Description: Rearrangement of lattice join of 4 classes. Frequently-used special case of latj4 18475 for atoms. (Contributed by NM, 9-Aug-2012.) |
Ref | Expression |
---|---|
hlatjcom.j | ⊢ ∨ = (join‘𝐾) |
hlatjcom.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatj4 | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38830 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | 3ad2ant1 1131 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | simp2l 1197 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ 𝐴) | |
4 | eqid 2728 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | hlatjcom.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 38756 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
8 | simp2r 1198 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | |
9 | 4, 5 | atbase 38756 | . . 3 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
11 | simp3l 1199 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
12 | 4, 5 | atbase 38756 | . . 3 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
13 | 11, 12 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
14 | simp3r 1200 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ 𝐴) | |
15 | 4, 5 | atbase 38756 | . . 3 ⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
16 | 14, 15 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝑆 ∈ (Base‘𝐾)) |
17 | hlatjcom.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
18 | 4, 17 | latj4 18475 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
19 | 2, 7, 10, 13, 16, 18 | syl122anc 1377 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑅) ∨ (𝑄 ∨ 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6543 (class class class)co 7415 Basecbs 17174 joincjn 18297 Latclat 18417 Atomscatm 38730 HLchlt 38817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-proset 18281 df-poset 18299 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-lat 18418 df-ats 38734 df-atl 38765 df-cvlat 38789 df-hlat 38818 |
This theorem is referenced by: 4atlem4b 39068 4atlem11 39077 dalem2 39129 dalem23 39164 cdleme16c 39748 |
Copyright terms: Public domain | W3C validator |