Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 17736 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 36939 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2758 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 36865 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 36865 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | 2, 6, 7 | latlej1 17736 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
9 | 1, 4, 5, 8 | syl3an 1157 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 class class class wbr 5032 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 joincjn 17620 Latclat 17721 Atomscatm 36839 HLchlt 36926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-lub 17650 df-join 17652 df-lat 17722 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 |
This theorem is referenced by: hlatlej2 36952 cvratlem 36997 cvrat4 37019 ps-2 37054 lplnllnneN 37132 dalem1 37235 lnatexN 37355 lncmp 37359 2atm2atN 37361 2llnma3r 37364 dalawlem3 37449 dalawlem6 37452 dalawlem7 37453 dalawlem12 37458 trlval4 37764 cdlemc5 37771 cdlemc6 37772 cdlemd3 37776 cdleme0cp 37790 cdleme3h 37811 cdleme5 37816 cdleme9 37829 cdleme11c 37837 cdleme15b 37851 cdleme17b 37863 cdleme19a 37879 cdleme20c 37887 cdleme20j 37894 cdleme21c 37903 cdleme22b 37917 cdleme22d 37919 cdleme22e 37920 cdleme22eALTN 37921 cdleme35e 38029 cdleme35f 38030 cdleme42a 38047 cdleme17d2 38071 cdlemeg46req 38105 cdlemg13a 38227 cdlemg17a 38237 cdlemg18b 38255 cdlemg27a 38268 trlcoabs2N 38298 cdlemg42 38305 cdlemk4 38410 cdlemk1u 38435 cdlemk39 38492 dia2dimlem1 38640 dia2dimlem2 38641 dia2dimlem3 38642 cdlemm10N 38694 cdlemn10 38782 dihjatcclem1 38994 |
Copyright terms: Public domain | W3C validator |