![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 18406 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | β’ β€ = (leβπΎ) |
hlatlej.j | β’ β¨ = (joinβπΎ) |
hlatlej.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatlej1 | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38537 | . 2 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2731 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | hlatlej.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38463 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | 2, 3 | atbase 38463 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | hlatlej.l | . . 3 β’ β€ = (leβπΎ) | |
7 | hlatlej.j | . . 3 β’ β¨ = (joinβπΎ) | |
8 | 2, 6, 7 | latlej1 18406 | . 2 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β π β€ (π β¨ π)) |
9 | 1, 4, 5, 8 | syl3an 1159 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1086 = wceq 1540 β wcel 2105 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17149 lecple 17209 joincjn 18269 Latclat 18389 Atomscatm 38437 HLchlt 38524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-lub 18304 df-join 18306 df-lat 18390 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 |
This theorem is referenced by: hlatlej2 38550 cvratlem 38596 cvrat4 38618 ps-2 38653 lplnllnneN 38731 dalem1 38834 lnatexN 38954 lncmp 38958 2atm2atN 38960 2llnma3r 38963 dalawlem3 39048 dalawlem6 39051 dalawlem7 39052 dalawlem12 39057 trlval4 39363 cdlemc5 39370 cdlemc6 39371 cdlemd3 39375 cdleme0cp 39389 cdleme3h 39410 cdleme5 39415 cdleme9 39428 cdleme11c 39436 cdleme15b 39450 cdleme17b 39462 cdleme19a 39478 cdleme20c 39486 cdleme20j 39493 cdleme21c 39502 cdleme22b 39516 cdleme22d 39518 cdleme22e 39519 cdleme22eALTN 39520 cdleme35e 39628 cdleme35f 39629 cdleme42a 39646 cdleme17d2 39670 cdlemeg46req 39704 cdlemg13a 39826 cdlemg17a 39836 cdlemg18b 39854 cdlemg27a 39867 trlcoabs2N 39897 cdlemg42 39904 cdlemk4 40009 cdlemk1u 40034 cdlemk39 40091 dia2dimlem1 40239 dia2dimlem2 40240 dia2dimlem3 40241 cdlemm10N 40293 cdlemn10 40381 dihjatcclem1 40593 |
Copyright terms: Public domain | W3C validator |