| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. Special case of latlej1 18407 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39356 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39282 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39282 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 8 | 2, 6, 7 | latlej1 18407 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 9 | 1, 4, 5, 8 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 Latclat 18390 Atomscatm 39256 HLchlt 39343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-join 18307 df-lat 18391 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 |
| This theorem is referenced by: hlatlej2 39369 cvratlem 39415 cvrat4 39437 ps-2 39472 lplnllnneN 39550 dalem1 39653 lnatexN 39773 lncmp 39777 2atm2atN 39779 2llnma3r 39782 dalawlem3 39867 dalawlem6 39870 dalawlem7 39871 dalawlem12 39876 trlval4 40182 cdlemc5 40189 cdlemc6 40190 cdlemd3 40194 cdleme0cp 40208 cdleme3h 40229 cdleme5 40234 cdleme9 40247 cdleme11c 40255 cdleme15b 40269 cdleme17b 40281 cdleme19a 40297 cdleme20c 40305 cdleme20j 40312 cdleme21c 40321 cdleme22b 40335 cdleme22d 40337 cdleme22e 40338 cdleme22eALTN 40339 cdleme35e 40447 cdleme35f 40448 cdleme42a 40465 cdleme17d2 40489 cdlemeg46req 40523 cdlemg13a 40645 cdlemg17a 40655 cdlemg18b 40673 cdlemg27a 40686 trlcoabs2N 40716 cdlemg42 40723 cdlemk4 40828 cdlemk1u 40853 cdlemk39 40910 dia2dimlem1 41058 dia2dimlem2 41059 dia2dimlem3 41060 cdlemm10N 41112 cdlemn10 41200 dihjatcclem1 41412 |
| Copyright terms: Public domain | W3C validator |