Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 18175 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37384 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37310 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 37310 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | 2, 6, 7 | latlej1 18175 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
9 | 1, 4, 5, 8 | syl3an 1159 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 class class class wbr 5075 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 lecple 16978 joincjn 18038 Latclat 18158 Atomscatm 37284 HLchlt 37371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-lub 18073 df-join 18075 df-lat 18159 df-ats 37288 df-atl 37319 df-cvlat 37343 df-hlat 37372 |
This theorem is referenced by: hlatlej2 37397 cvratlem 37442 cvrat4 37464 ps-2 37499 lplnllnneN 37577 dalem1 37680 lnatexN 37800 lncmp 37804 2atm2atN 37806 2llnma3r 37809 dalawlem3 37894 dalawlem6 37897 dalawlem7 37898 dalawlem12 37903 trlval4 38209 cdlemc5 38216 cdlemc6 38217 cdlemd3 38221 cdleme0cp 38235 cdleme3h 38256 cdleme5 38261 cdleme9 38274 cdleme11c 38282 cdleme15b 38296 cdleme17b 38308 cdleme19a 38324 cdleme20c 38332 cdleme20j 38339 cdleme21c 38348 cdleme22b 38362 cdleme22d 38364 cdleme22e 38365 cdleme22eALTN 38366 cdleme35e 38474 cdleme35f 38475 cdleme42a 38492 cdleme17d2 38516 cdlemeg46req 38550 cdlemg13a 38672 cdlemg17a 38682 cdlemg18b 38700 cdlemg27a 38713 trlcoabs2N 38743 cdlemg42 38750 cdlemk4 38855 cdlemk1u 38880 cdlemk39 38937 dia2dimlem1 39085 dia2dimlem2 39086 dia2dimlem3 39087 cdlemm10N 39139 cdlemn10 39227 dihjatcclem1 39439 |
Copyright terms: Public domain | W3C validator |