![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 18505 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39344 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2734 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 39270 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 39270 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | 2, 6, 7 | latlej1 18505 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
9 | 1, 4, 5, 8 | syl3an 1159 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 class class class wbr 5147 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 lecple 17304 joincjn 18368 Latclat 18488 Atomscatm 39244 HLchlt 39331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-lub 18403 df-join 18405 df-lat 18489 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 |
This theorem is referenced by: hlatlej2 39357 cvratlem 39403 cvrat4 39425 ps-2 39460 lplnllnneN 39538 dalem1 39641 lnatexN 39761 lncmp 39765 2atm2atN 39767 2llnma3r 39770 dalawlem3 39855 dalawlem6 39858 dalawlem7 39859 dalawlem12 39864 trlval4 40170 cdlemc5 40177 cdlemc6 40178 cdlemd3 40182 cdleme0cp 40196 cdleme3h 40217 cdleme5 40222 cdleme9 40235 cdleme11c 40243 cdleme15b 40257 cdleme17b 40269 cdleme19a 40285 cdleme20c 40293 cdleme20j 40300 cdleme21c 40309 cdleme22b 40323 cdleme22d 40325 cdleme22e 40326 cdleme22eALTN 40327 cdleme35e 40435 cdleme35f 40436 cdleme42a 40453 cdleme17d2 40477 cdlemeg46req 40511 cdlemg13a 40633 cdlemg17a 40643 cdlemg18b 40661 cdlemg27a 40674 trlcoabs2N 40704 cdlemg42 40711 cdlemk4 40816 cdlemk1u 40841 cdlemk39 40898 dia2dimlem1 41046 dia2dimlem2 41047 dia2dimlem3 41048 cdlemm10N 41100 cdlemn10 41188 dihjatcclem1 41400 |
Copyright terms: Public domain | W3C validator |