| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. Special case of latlej1 18390 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39350 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39276 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39276 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 8 | 2, 6, 7 | latlej1 18390 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 9 | 1, 4, 5, 8 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 lecple 17204 joincjn 18253 Latclat 18373 Atomscatm 39250 HLchlt 39337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18286 df-join 18288 df-lat 18374 df-ats 39254 df-atl 39285 df-cvlat 39309 df-hlat 39338 |
| This theorem is referenced by: hlatlej2 39363 cvratlem 39409 cvrat4 39431 ps-2 39466 lplnllnneN 39544 dalem1 39647 lnatexN 39767 lncmp 39771 2atm2atN 39773 2llnma3r 39776 dalawlem3 39861 dalawlem6 39864 dalawlem7 39865 dalawlem12 39870 trlval4 40176 cdlemc5 40183 cdlemc6 40184 cdlemd3 40188 cdleme0cp 40202 cdleme3h 40223 cdleme5 40228 cdleme9 40241 cdleme11c 40249 cdleme15b 40263 cdleme17b 40275 cdleme19a 40291 cdleme20c 40299 cdleme20j 40306 cdleme21c 40315 cdleme22b 40329 cdleme22d 40331 cdleme22e 40332 cdleme22eALTN 40333 cdleme35e 40441 cdleme35f 40442 cdleme42a 40459 cdleme17d2 40483 cdlemeg46req 40517 cdlemg13a 40639 cdlemg17a 40649 cdlemg18b 40667 cdlemg27a 40680 trlcoabs2N 40710 cdlemg42 40717 cdlemk4 40822 cdlemk1u 40847 cdlemk39 40904 dia2dimlem1 41052 dia2dimlem2 41053 dia2dimlem3 41054 cdlemm10N 41106 cdlemn10 41194 dihjatcclem1 41406 |
| Copyright terms: Public domain | W3C validator |