![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 18405 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | β’ β€ = (leβπΎ) |
hlatlej.j | β’ β¨ = (joinβπΎ) |
hlatlej.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
hlatlej1 | β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38536 | . 2 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2730 | . . 3 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | hlatlej.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 2, 3 | atbase 38462 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
5 | 2, 3 | atbase 38462 | . 2 β’ (π β π΄ β π β (BaseβπΎ)) |
6 | hlatlej.l | . . 3 β’ β€ = (leβπΎ) | |
7 | hlatlej.j | . . 3 β’ β¨ = (joinβπΎ) | |
8 | 2, 6, 7 | latlej1 18405 | . 2 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β π β€ (π β¨ π)) |
9 | 1, 4, 5, 8 | syl3an 1158 | 1 β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β π β€ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1085 = wceq 1539 β wcel 2104 class class class wbr 5147 βcfv 6542 (class class class)co 7411 Basecbs 17148 lecple 17208 joincjn 18268 Latclat 18388 Atomscatm 38436 HLchlt 38523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-lub 18303 df-join 18305 df-lat 18389 df-ats 38440 df-atl 38471 df-cvlat 38495 df-hlat 38524 |
This theorem is referenced by: hlatlej2 38549 cvratlem 38595 cvrat4 38617 ps-2 38652 lplnllnneN 38730 dalem1 38833 lnatexN 38953 lncmp 38957 2atm2atN 38959 2llnma3r 38962 dalawlem3 39047 dalawlem6 39050 dalawlem7 39051 dalawlem12 39056 trlval4 39362 cdlemc5 39369 cdlemc6 39370 cdlemd3 39374 cdleme0cp 39388 cdleme3h 39409 cdleme5 39414 cdleme9 39427 cdleme11c 39435 cdleme15b 39449 cdleme17b 39461 cdleme19a 39477 cdleme20c 39485 cdleme20j 39492 cdleme21c 39501 cdleme22b 39515 cdleme22d 39517 cdleme22e 39518 cdleme22eALTN 39519 cdleme35e 39627 cdleme35f 39628 cdleme42a 39645 cdleme17d2 39669 cdlemeg46req 39703 cdlemg13a 39825 cdlemg17a 39835 cdlemg18b 39853 cdlemg27a 39866 trlcoabs2N 39896 cdlemg42 39903 cdlemk4 40008 cdlemk1u 40033 cdlemk39 40090 dia2dimlem1 40238 dia2dimlem2 40239 dia2dimlem3 40240 cdlemm10N 40292 cdlemn10 40380 dihjatcclem1 40592 |
Copyright terms: Public domain | W3C validator |