| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. Special case of latlej1 18414 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39363 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39289 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39289 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 8 | 2, 6, 7 | latlej1 18414 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 9 | 1, 4, 5, 8 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 joincjn 18279 Latclat 18397 Atomscatm 39263 HLchlt 39350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-lub 18312 df-join 18314 df-lat 18398 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 |
| This theorem is referenced by: hlatlej2 39376 cvratlem 39422 cvrat4 39444 ps-2 39479 lplnllnneN 39557 dalem1 39660 lnatexN 39780 lncmp 39784 2atm2atN 39786 2llnma3r 39789 dalawlem3 39874 dalawlem6 39877 dalawlem7 39878 dalawlem12 39883 trlval4 40189 cdlemc5 40196 cdlemc6 40197 cdlemd3 40201 cdleme0cp 40215 cdleme3h 40236 cdleme5 40241 cdleme9 40254 cdleme11c 40262 cdleme15b 40276 cdleme17b 40288 cdleme19a 40304 cdleme20c 40312 cdleme20j 40319 cdleme21c 40328 cdleme22b 40342 cdleme22d 40344 cdleme22e 40345 cdleme22eALTN 40346 cdleme35e 40454 cdleme35f 40455 cdleme42a 40472 cdleme17d2 40496 cdlemeg46req 40530 cdlemg13a 40652 cdlemg17a 40662 cdlemg18b 40680 cdlemg27a 40693 trlcoabs2N 40723 cdlemg42 40730 cdlemk4 40835 cdlemk1u 40860 cdlemk39 40917 dia2dimlem1 41065 dia2dimlem2 41066 dia2dimlem3 41067 cdlemm10N 41119 cdlemn10 41207 dihjatcclem1 41419 |
| Copyright terms: Public domain | W3C validator |