| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version | ||
| Description: A join's first argument is less than or equal to the join. Special case of latlej1 18354 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
| Ref | Expression |
|---|---|
| hlatlej.l | ⊢ ≤ = (le‘𝐾) |
| hlatlej.j | ⊢ ∨ = (join‘𝐾) |
| hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39461 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | 2, 3 | atbase 39387 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 5 | 2, 3 | atbase 39387 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 8 | 2, 6, 7 | latlej1 18354 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| 9 | 1, 4, 5, 8 | syl3an 1160 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 joincjn 18217 Latclat 18337 Atomscatm 39361 HLchlt 39448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-join 18252 df-lat 18338 df-ats 39365 df-atl 39396 df-cvlat 39420 df-hlat 39449 |
| This theorem is referenced by: hlatlej2 39474 cvratlem 39519 cvrat4 39541 ps-2 39576 lplnllnneN 39654 dalem1 39757 lnatexN 39877 lncmp 39881 2atm2atN 39883 2llnma3r 39886 dalawlem3 39971 dalawlem6 39974 dalawlem7 39975 dalawlem12 39980 trlval4 40286 cdlemc5 40293 cdlemc6 40294 cdlemd3 40298 cdleme0cp 40312 cdleme3h 40333 cdleme5 40338 cdleme9 40351 cdleme11c 40359 cdleme15b 40373 cdleme17b 40385 cdleme19a 40401 cdleme20c 40409 cdleme20j 40416 cdleme21c 40425 cdleme22b 40439 cdleme22d 40441 cdleme22e 40442 cdleme22eALTN 40443 cdleme35e 40551 cdleme35f 40552 cdleme42a 40569 cdleme17d2 40593 cdlemeg46req 40627 cdlemg13a 40749 cdlemg17a 40759 cdlemg18b 40777 cdlemg27a 40790 trlcoabs2N 40820 cdlemg42 40827 cdlemk4 40932 cdlemk1u 40957 cdlemk39 41014 dia2dimlem1 41162 dia2dimlem2 41163 dia2dimlem3 41164 cdlemm10N 41216 cdlemn10 41304 dihjatcclem1 41516 |
| Copyright terms: Public domain | W3C validator |