Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hlatlej1 | Structured version Visualization version GIF version |
Description: A join's first argument is less than or equal to the join. Special case of latlej1 18081 to show an atom is on a line. (Contributed by NM, 15-May-2013.) |
Ref | Expression |
---|---|
hlatlej.l | ⊢ ≤ = (le‘𝐾) |
hlatlej.j | ⊢ ∨ = (join‘𝐾) |
hlatlej.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
hlatlej1 | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37304 | . 2 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2738 | . . 3 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | hlatlej.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 2, 3 | atbase 37230 | . 2 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
5 | 2, 3 | atbase 37230 | . 2 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
6 | hlatlej.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
7 | hlatlej.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
8 | 2, 6, 7 | latlej1 18081 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
9 | 1, 4, 5, 8 | syl3an 1158 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 Latclat 18064 Atomscatm 37204 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-lub 17979 df-join 17981 df-lat 18065 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: hlatlej2 37317 cvratlem 37362 cvrat4 37384 ps-2 37419 lplnllnneN 37497 dalem1 37600 lnatexN 37720 lncmp 37724 2atm2atN 37726 2llnma3r 37729 dalawlem3 37814 dalawlem6 37817 dalawlem7 37818 dalawlem12 37823 trlval4 38129 cdlemc5 38136 cdlemc6 38137 cdlemd3 38141 cdleme0cp 38155 cdleme3h 38176 cdleme5 38181 cdleme9 38194 cdleme11c 38202 cdleme15b 38216 cdleme17b 38228 cdleme19a 38244 cdleme20c 38252 cdleme20j 38259 cdleme21c 38268 cdleme22b 38282 cdleme22d 38284 cdleme22e 38285 cdleme22eALTN 38286 cdleme35e 38394 cdleme35f 38395 cdleme42a 38412 cdleme17d2 38436 cdlemeg46req 38470 cdlemg13a 38592 cdlemg17a 38602 cdlemg18b 38620 cdlemg27a 38633 trlcoabs2N 38663 cdlemg42 38670 cdlemk4 38775 cdlemk1u 38800 cdlemk39 38857 dia2dimlem1 39005 dia2dimlem2 39006 dia2dimlem3 39007 cdlemm10N 39059 cdlemn10 39147 dihjatcclem1 39359 |
Copyright terms: Public domain | W3C validator |