Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl2at Structured version   Visualization version   GIF version

Theorem hl2at 38264
Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
Hypothesis
Ref Expression
hl2atom.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
hl2at (𝐾 ∈ HL β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž)
Distinct variable groups:   π‘ž,𝑝,𝐴   𝐾,𝑝,π‘ž

Proof of Theorem hl2at
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . 3 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 eqid 2732 . . 3 (ltβ€˜πΎ) = (ltβ€˜πΎ)
3 eqid 2732 . . 3 (0.β€˜πΎ) = (0.β€˜πΎ)
4 eqid 2732 . . 3 (1.β€˜πΎ) = (1.β€˜πΎ)
51, 2, 3, 4hlhgt2 38248 . 2 (𝐾 ∈ HL β†’ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)(1.β€˜πΎ)))
6 simpl 483 . . . . . 6 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ 𝐾 ∈ HL)
7 hlop 38220 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OP)
87adantr 481 . . . . . . 7 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ 𝐾 ∈ OP)
91, 3op0cl 38042 . . . . . . 7 (𝐾 ∈ OP β†’ (0.β€˜πΎ) ∈ (Baseβ€˜πΎ))
108, 9syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (0.β€˜πΎ) ∈ (Baseβ€˜πΎ))
11 simpr 485 . . . . . 6 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ π‘₯ ∈ (Baseβ€˜πΎ))
12 eqid 2732 . . . . . . 7 (leβ€˜πΎ) = (leβ€˜πΎ)
13 hl2atom.a . . . . . . 7 𝐴 = (Atomsβ€˜πΎ)
141, 12, 2, 13hlrelat1 38259 . . . . . 6 ((𝐾 ∈ HL ∧ (0.β€˜πΎ) ∈ (Baseβ€˜πΎ) ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯)))
156, 10, 11, 14syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ ((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ β†’ βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯)))
161, 4op1cl 38043 . . . . . . 7 (𝐾 ∈ OP β†’ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ))
178, 16syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ))
181, 12, 2, 13hlrelat1 38259 . . . . . 6 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ) ∧ (1.β€˜πΎ) ∈ (Baseβ€˜πΎ)) β†’ (π‘₯(ltβ€˜πΎ)(1.β€˜πΎ) β†’ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))))
1917, 18mpd3an3 1462 . . . . 5 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (π‘₯(ltβ€˜πΎ)(1.β€˜πΎ) β†’ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))))
2015, 19anim12d 609 . . . 4 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)(1.β€˜πΎ)) β†’ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ)))))
21 reeanv 3226 . . . . 5 (βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 ((Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))) ↔ (βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))))
22 nbrne2 5167 . . . . . . . 8 ((𝑝(leβ€˜πΎ)π‘₯ ∧ Β¬ π‘ž(leβ€˜πΎ)π‘₯) β†’ 𝑝 β‰  π‘ž)
2322ad2ant2lr 746 . . . . . . 7 (((Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))) β†’ 𝑝 β‰  π‘ž)
2423reximi 3084 . . . . . 6 (βˆƒπ‘ž ∈ 𝐴 ((Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))) β†’ βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž)
2524reximi 3084 . . . . 5 (βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 ((Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž)
2621, 25sylbir 234 . . . 4 ((βˆƒπ‘ ∈ 𝐴 (Β¬ 𝑝(leβ€˜πΎ)(0.β€˜πΎ) ∧ 𝑝(leβ€˜πΎ)π‘₯) ∧ βˆƒπ‘ž ∈ 𝐴 (Β¬ π‘ž(leβ€˜πΎ)π‘₯ ∧ π‘ž(leβ€˜πΎ)(1.β€˜πΎ))) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž)
2720, 26syl6 35 . . 3 ((𝐾 ∈ HL ∧ π‘₯ ∈ (Baseβ€˜πΎ)) β†’ (((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)(1.β€˜πΎ)) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž))
2827rexlimdva 3155 . 2 (𝐾 ∈ HL β†’ (βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)((0.β€˜πΎ)(ltβ€˜πΎ)π‘₯ ∧ π‘₯(ltβ€˜πΎ)(1.β€˜πΎ)) β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž))
295, 28mpd 15 1 (𝐾 ∈ HL β†’ βˆƒπ‘ ∈ 𝐴 βˆƒπ‘ž ∈ 𝐴 𝑝 β‰  π‘ž)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆƒwrex 3070   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140  lecple 17200  ltcplt 18257  0.cp0 18372  1.cp1 18373  OPcops 38030  Atomscatm 38121  HLchlt 38208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209
This theorem is referenced by:  atex  38265
  Copyright terms: Public domain W3C validator