Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl2at Structured version   Visualization version   GIF version

Theorem hl2at 39387
Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
Hypothesis
Ref Expression
hl2atom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hl2at (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞

Proof of Theorem hl2at
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2734 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2734 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2734 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt2 39371 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)))
6 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
7 hlop 39343 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
87adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
91, 3op0cl 39165 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾))
11 simpr 484 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
12 eqid 2734 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
13 hl2atom.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
141, 12, 2, 13hlrelat1 39382 . . . . . 6 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
156, 10, 11, 14syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
161, 4op1cl 39166 . . . . . . 7 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
178, 16syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (1.‘𝐾) ∈ (Base‘𝐾))
181, 12, 2, 13hlrelat1 39382 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
1917, 18mpd3an3 1461 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
2015, 19anim12d 609 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾)))))
21 reeanv 3226 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) ↔ (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
22 nbrne2 5167 . . . . . . . 8 ((𝑝(le‘𝐾)𝑥 ∧ ¬ 𝑞(le‘𝐾)𝑥) → 𝑝𝑞)
2322ad2ant2lr 748 . . . . . . 7 (((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → 𝑝𝑞)
2423reximi 3081 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑞𝐴 𝑝𝑞)
2524reximi 3081 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2621, 25sylbir 235 . . . 4 ((∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2720, 26syl6 35 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
2827rexlimdva 3152 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
295, 28mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1536  wcel 2105  wne 2937  wrex 3067   class class class wbr 5147  cfv 6562  Basecbs 17244  lecple 17304  ltcplt 18365  0.cp0 18480  1.cp1 18481  OPcops 39153  Atomscatm 39244  HLchlt 39331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-p1 18483  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332
This theorem is referenced by:  atex  39388
  Copyright terms: Public domain W3C validator