Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl2at Structured version   Visualization version   GIF version

Theorem hl2at 39399
Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
Hypothesis
Ref Expression
hl2atom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hl2at (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞

Proof of Theorem hl2at
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2729 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2729 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2729 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt2 39383 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)))
6 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
7 hlop 39355 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
87adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
91, 3op0cl 39177 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾))
11 simpr 484 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
12 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
13 hl2atom.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
141, 12, 2, 13hlrelat1 39394 . . . . . 6 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
156, 10, 11, 14syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
161, 4op1cl 39178 . . . . . . 7 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
178, 16syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (1.‘𝐾) ∈ (Base‘𝐾))
181, 12, 2, 13hlrelat1 39394 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
1917, 18mpd3an3 1464 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
2015, 19anim12d 609 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾)))))
21 reeanv 3209 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) ↔ (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
22 nbrne2 5127 . . . . . . . 8 ((𝑝(le‘𝐾)𝑥 ∧ ¬ 𝑞(le‘𝐾)𝑥) → 𝑝𝑞)
2322ad2ant2lr 748 . . . . . . 7 (((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → 𝑝𝑞)
2423reximi 3067 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑞𝐴 𝑝𝑞)
2524reximi 3067 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2621, 25sylbir 235 . . . 4 ((∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2720, 26syl6 35 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
2827rexlimdva 3134 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
295, 28mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  Basecbs 17179  lecple 17227  ltcplt 18269  0.cp0 18382  1.cp1 18383  OPcops 39165  Atomscatm 39256  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  atex  39400
  Copyright terms: Public domain W3C validator