Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hl2at Structured version   Visualization version   GIF version

Theorem hl2at 37624
Description: A Hilbert lattice has at least 2 atoms. (Contributed by NM, 5-Dec-2011.)
Hypothesis
Ref Expression
hl2atom.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
hl2at (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Distinct variable groups:   𝑞,𝑝,𝐴   𝐾,𝑝,𝑞

Proof of Theorem hl2at
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐾) = (Base‘𝐾)
2 eqid 2737 . . 3 (lt‘𝐾) = (lt‘𝐾)
3 eqid 2737 . . 3 (0.‘𝐾) = (0.‘𝐾)
4 eqid 2737 . . 3 (1.‘𝐾) = (1.‘𝐾)
51, 2, 3, 4hlhgt2 37608 . 2 (𝐾 ∈ HL → ∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)))
6 simpl 483 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ HL)
7 hlop 37580 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
87adantr 481 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝐾 ∈ OP)
91, 3op0cl 37402 . . . . . . 7 (𝐾 ∈ OP → (0.‘𝐾) ∈ (Base‘𝐾))
108, 9syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (0.‘𝐾) ∈ (Base‘𝐾))
11 simpr 485 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → 𝑥 ∈ (Base‘𝐾))
12 eqid 2737 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
13 hl2atom.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
141, 12, 2, 13hlrelat1 37619 . . . . . 6 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ (Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
156, 10, 11, 14syl3anc 1370 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → ((0.‘𝐾)(lt‘𝐾)𝑥 → ∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥)))
161, 4op1cl 37403 . . . . . . 7 (𝐾 ∈ OP → (1.‘𝐾) ∈ (Base‘𝐾))
178, 16syl 17 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (1.‘𝐾) ∈ (Base‘𝐾))
181, 12, 2, 13hlrelat1 37619 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾) ∧ (1.‘𝐾) ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
1917, 18mpd3an3 1461 . . . . 5 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (𝑥(lt‘𝐾)(1.‘𝐾) → ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
2015, 19anim12d 609 . . . 4 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾)))))
21 reeanv 3214 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) ↔ (∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))))
22 nbrne2 5107 . . . . . . . 8 ((𝑝(le‘𝐾)𝑥 ∧ ¬ 𝑞(le‘𝐾)𝑥) → 𝑝𝑞)
2322ad2ant2lr 745 . . . . . . 7 (((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → 𝑝𝑞)
2423reximi 3084 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑞𝐴 𝑝𝑞)
2524reximi 3084 . . . . 5 (∃𝑝𝐴𝑞𝐴 ((¬ 𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ (¬ 𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2621, 25sylbir 234 . . . 4 ((∃𝑝𝐴𝑝(le‘𝐾)(0.‘𝐾) ∧ 𝑝(le‘𝐾)𝑥) ∧ ∃𝑞𝐴𝑞(le‘𝐾)𝑥𝑞(le‘𝐾)(1.‘𝐾))) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
2720, 26syl6 35 . . 3 ((𝐾 ∈ HL ∧ 𝑥 ∈ (Base‘𝐾)) → (((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
2827rexlimdva 3149 . 2 (𝐾 ∈ HL → (∃𝑥 ∈ (Base‘𝐾)((0.‘𝐾)(lt‘𝐾)𝑥𝑥(lt‘𝐾)(1.‘𝐾)) → ∃𝑝𝐴𝑞𝐴 𝑝𝑞))
295, 28mpd 15 1 (𝐾 ∈ HL → ∃𝑝𝐴𝑞𝐴 𝑝𝑞)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1540  wcel 2105  wne 2941  wrex 3071   class class class wbr 5087  cfv 6465  Basecbs 16982  lecple 17039  ltcplt 18096  0.cp0 18211  1.cp1 18212  OPcops 37390  Atomscatm 37481  HLchlt 37568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-proset 18083  df-poset 18101  df-plt 18118  df-lub 18134  df-glb 18135  df-join 18136  df-meet 18137  df-p0 18213  df-p1 18214  df-lat 18220  df-clat 18287  df-oposet 37394  df-ol 37396  df-oml 37397  df-covers 37484  df-ats 37485  df-atl 37516  df-cvlat 37540  df-hlat 37569
This theorem is referenced by:  atex  37625
  Copyright terms: Public domain W3C validator