Mathbox for Stanislas Polu |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > int-ineq1stprincd | Structured version Visualization version GIF version |
Description: FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
Ref | Expression |
---|---|
int-ineq1stprincd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
int-ineq1stprincd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
int-ineq1stprincd.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
int-ineq1stprincd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
int-ineq1stprincd.5 | ⊢ (𝜑 → 𝐵 ≤ 𝐴) |
int-ineq1stprincd.6 | ⊢ (𝜑 → 𝐷 ≤ 𝐶) |
Ref | Expression |
---|---|
int-ineq1stprincd | ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | int-ineq1stprincd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
2 | int-ineq1stprincd.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
3 | int-ineq1stprincd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | int-ineq1stprincd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
5 | int-ineq1stprincd.5 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐴) | |
6 | int-ineq1stprincd.6 | . 2 ⊢ (𝜑 → 𝐷 ≤ 𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | le2addd 11603 | 1 ⊢ (𝜑 → (𝐵 + 𝐷) ≤ (𝐴 + 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5075 (class class class)co 7284 ℝcr 10879 + caddc 10883 ≤ cle 11019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-xr 11022 df-ltxr 11023 df-le 11024 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |