Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version |
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
Ref | Expression |
---|---|
le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | le2add 11457 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
8 | 3, 4, 5, 6, 7 | syl22anc 836 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 1, 2, 8 | mp2and 696 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 + caddc 10874 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 |
This theorem is referenced by: supadd 11943 o1add 15323 o1sub 15325 o1fsum 15525 sadcaddlem 16164 4sqlem11 16656 4sqlem12 16657 4sqlem15 16660 4sqlem16 16661 prdsxmetlem 23521 nrmmetd 23730 nmotri 23903 pcoass 24187 minveclem2 24590 ovollb2lem 24652 ovolunlem1a 24660 ovoliunlem1 24666 nulmbl2 24700 ioombl1lem4 24725 uniioombllem5 24751 itg2splitlem 24913 itg2addlem 24923 ibladdlem 24984 ulmbdd 25557 cxpaddle 25905 ang180lem2 25960 fsumharmonic 26161 lgamgulmlem3 26180 lgamgulmlem5 26182 ppiub 26352 lgsdirprm 26479 lgsqrlem2 26495 lgseisenlem2 26524 2sqlem8 26574 vmadivsumb 26631 dchrisumlem2 26638 dchrisum0lem1b 26663 mulog2sumlem1 26682 mulog2sumlem2 26683 selbergb 26697 selberg2b 26700 chpdifbndlem1 26701 logdivbnd 26704 selberg3lem2 26706 pntrlog2bnd 26732 pntpbnd2 26735 pntibndlem2 26739 pntlemr 26750 ostth2lem2 26782 ostth3 26786 smcnlem 29059 minvecolem2 29237 stadd3i 30610 le2halvesd 31078 wrdt2ind 31225 dnibndlem9 34666 ismblfin 35818 itg2addnc 35831 ibladdnclem 35833 ftc1anclem7 35856 intlewftc 40069 aks4d1p1p2 40078 dvle2 40080 2np3bcnp1 40100 sticksstones7 40108 sticksstones12a 40113 sticksstones12 40114 metakunt29 40153 2xp3dxp2ge1d 40162 pell1qrgaplem 40695 pellqrex 40701 pellfundgt1 40705 areaquad 41047 imo72b2lem0 41776 int-ineq1stprincd 41803 dvdivbd 43464 fourierdlem30 43678 sge0xaddlem2 43972 carageniuncllem2 44060 |
Copyright terms: Public domain | W3C validator |