| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version | ||
| Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
| 3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 7 | le2add 11711 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
| 8 | 3, 4, 5, 6, 7 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
| 9 | 1, 2, 8 | mp2and 699 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 class class class wbr 5116 (class class class)co 7399 ℝcr 11120 + caddc 11124 ≤ cle 11262 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 |
| This theorem is referenced by: supadd 12202 o1add 15617 o1sub 15619 o1fsum 15816 sadcaddlem 16461 4sqlem11 16960 4sqlem12 16961 4sqlem15 16964 4sqlem16 16965 prdsxmetlem 24292 nrmmetd 24498 nmotri 24663 pcoass 24960 minveclem2 25363 ovollb2lem 25426 ovolunlem1a 25434 ovoliunlem1 25440 nulmbl2 25474 ioombl1lem4 25499 uniioombllem5 25525 itg2splitlem 25686 itg2addlem 25696 ibladdlem 25758 ulmbdd 26344 cxpaddle 26698 ang180lem2 26756 fsumharmonic 26958 lgamgulmlem3 26977 lgamgulmlem5 26979 ppiub 27151 lgsdirprm 27278 lgsqrlem2 27294 lgseisenlem2 27323 2sqlem8 27373 vmadivsumb 27430 dchrisumlem2 27437 dchrisum0lem1b 27462 mulog2sumlem1 27481 mulog2sumlem2 27482 selbergb 27496 selberg2b 27499 chpdifbndlem1 27500 logdivbnd 27503 selberg3lem2 27505 pntrlog2bnd 27531 pntpbnd2 27534 pntibndlem2 27538 pntlemr 27549 ostth2lem2 27581 ostth3 27585 smcnlem 30610 minvecolem2 30788 stadd3i 32161 le2halvesd 32666 wrdt2ind 32848 dnibndlem9 36425 ismblfin 37606 itg2addnc 37619 ibladdnclem 37621 ftc1anclem7 37644 intlewftc 41996 aks4d1p1p2 42005 dvle2 42007 posbezout 42035 2np3bcnp1 42079 sticksstones7 42087 sticksstones12a 42092 sticksstones12 42093 metakunt29 42168 2xp3dxp2ge1d 42176 pell1qrgaplem 42821 pellqrex 42827 pellfundgt1 42831 areaquad 43165 imo72b2lem0 44114 int-ineq1stprincd 44141 dvdivbd 45882 fourierdlem30 46096 sge0xaddlem2 46393 carageniuncllem2 46481 |
| Copyright terms: Public domain | W3C validator |