MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le2addd Structured version   Visualization version   GIF version

Theorem le2addd 10900
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
ltadd1d.3 (𝜑𝐶 ∈ ℝ)
lt2addd.4 (𝜑𝐷 ∈ ℝ)
le2addd.5 (𝜑𝐴𝐶)
le2addd.6 (𝜑𝐵𝐷)
Assertion
Ref Expression
le2addd (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))

Proof of Theorem le2addd
StepHypRef Expression
1 le2addd.5 . 2 (𝜑𝐴𝐶)
2 le2addd.6 . 2 (𝜑𝐵𝐷)
3 leidd.1 . . 3 (𝜑𝐴 ∈ ℝ)
4 ltnegd.2 . . 3 (𝜑𝐵 ∈ ℝ)
5 ltadd1d.3 . . 3 (𝜑𝐶 ∈ ℝ)
6 lt2addd.4 . . 3 (𝜑𝐷 ∈ ℝ)
7 le2add 10764 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
83, 4, 5, 6, 7syl22anc 867 . 2 (𝜑 → ((𝐴𝐶𝐵𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)))
91, 2, 8mp2and 690 1 (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 2155   class class class wbr 4809  (class class class)co 6842  cr 10188   + caddc 10192  cle 10329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334
This theorem is referenced by:  supadd  11245  o1add  14631  o1sub  14633  o1fsum  14831  sadcaddlem  15462  4sqlem11  15940  4sqlem12  15941  4sqlem15  15944  4sqlem16  15945  prdsxmetlem  22452  nrmmetd  22658  nmotri  22822  pcoass  23102  minveclem2  23486  ovollb2lem  23546  ovolunlem1a  23554  ovoliunlem1  23560  nulmbl2  23594  ioombl1lem4  23619  uniioombllem5  23645  itg2splitlem  23806  itg2addlem  23816  ibladdlem  23877  ulmbdd  24443  cxpaddle  24784  ang180lem2  24831  fsumharmonic  25029  lgamgulmlem3  25048  lgamgulmlem5  25050  ppiub  25220  lgsdirprm  25347  lgsqrlem2  25363  lgseisenlem2  25392  2sqlem8  25442  vmadivsumb  25463  dchrisumlem2  25470  dchrisum0lem1b  25495  mulog2sumlem1  25514  mulog2sumlem2  25515  selbergb  25529  selberg2b  25532  chpdifbndlem1  25533  logdivbnd  25536  selberg3lem2  25538  pntrlog2bnd  25564  pntpbnd2  25567  pntibndlem2  25571  pntlemr  25582  ostth2lem2  25614  ostth3  25618  smcnlem  27943  minvecolem2  28122  stadd3i  29498  le2halvesd  29904  dnibndlem9  32847  ismblfin  33806  itg2addnc  33819  ibladdnclem  33821  ftc1anclem7  33846  pell1qrgaplem  38047  pellqrex  38053  pellfundgt1  38057  areaquad  38410  imo72b2lem0  39071  int-ineq1stprincd  39101  dvdivbd  40708  fourierdlem30  40923  sge0xaddlem2  41220  carageniuncllem2  41308
  Copyright terms: Public domain W3C validator