Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 396
∈ wcel 2106 class class class wbr 5147
(class class class)co 7405 ℝcr 11105
+ caddc 11109 ≤
cle 11245 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 |
This theorem is referenced by: supadd
12178 o1add
15554 o1sub
15556 o1fsum
15755 sadcaddlem
16394 4sqlem11
16884 4sqlem12
16885 4sqlem15
16888 4sqlem16
16889 prdsxmetlem
23865 nrmmetd
24074 nmotri
24247 pcoass
24531 minveclem2
24934 ovollb2lem
24996 ovolunlem1a
25004 ovoliunlem1
25010 nulmbl2
25044 ioombl1lem4
25069 uniioombllem5
25095 itg2splitlem
25257 itg2addlem
25267 ibladdlem
25328 ulmbdd
25901 cxpaddle
26249 ang180lem2
26304 fsumharmonic
26505 lgamgulmlem3
26524 lgamgulmlem5
26526 ppiub
26696 lgsdirprm
26823 lgsqrlem2
26839 lgseisenlem2
26868 2sqlem8
26918 vmadivsumb
26975 dchrisumlem2
26982 dchrisum0lem1b
27007 mulog2sumlem1
27026 mulog2sumlem2
27027 selbergb
27041 selberg2b
27044 chpdifbndlem1
27045 logdivbnd
27048 selberg3lem2
27050 pntrlog2bnd
27076 pntpbnd2
27079 pntibndlem2
27083 pntlemr
27094 ostth2lem2
27126 ostth3
27130 smcnlem
29937 minvecolem2
30115 stadd3i
31488 le2halvesd
31955 wrdt2ind
32104 dnibndlem9
35350 ismblfin
36517 itg2addnc
36530 ibladdnclem
36532 ftc1anclem7
36555 intlewftc
40914 aks4d1p1p2
40923 dvle2
40925 2np3bcnp1
40948 sticksstones7
40956 sticksstones12a
40961 sticksstones12
40962 metakunt29
41001 2xp3dxp2ge1d
41010 pell1qrgaplem
41596 pellqrex
41602 pellfundgt1
41606 areaquad
41950 imo72b2lem0
42902 int-ineq1stprincd
42929 dvdivbd
44625 fourierdlem30
44839 sge0xaddlem2
45136 carageniuncllem2
45224 |