![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version |
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
Ref | Expression |
---|---|
le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | le2add 11772 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
8 | 3, 4, 5, 6, 7 | syl22anc 838 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 1, 2, 8 | mp2and 698 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 + caddc 11187 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: supadd 12263 o1add 15660 o1sub 15662 o1fsum 15861 sadcaddlem 16503 4sqlem11 17002 4sqlem12 17003 4sqlem15 17006 4sqlem16 17007 prdsxmetlem 24399 nrmmetd 24608 nmotri 24781 pcoass 25076 minveclem2 25479 ovollb2lem 25542 ovolunlem1a 25550 ovoliunlem1 25556 nulmbl2 25590 ioombl1lem4 25615 uniioombllem5 25641 itg2splitlem 25803 itg2addlem 25813 ibladdlem 25875 ulmbdd 26459 cxpaddle 26813 ang180lem2 26871 fsumharmonic 27073 lgamgulmlem3 27092 lgamgulmlem5 27094 ppiub 27266 lgsdirprm 27393 lgsqrlem2 27409 lgseisenlem2 27438 2sqlem8 27488 vmadivsumb 27545 dchrisumlem2 27552 dchrisum0lem1b 27577 mulog2sumlem1 27596 mulog2sumlem2 27597 selbergb 27611 selberg2b 27614 chpdifbndlem1 27615 logdivbnd 27618 selberg3lem2 27620 pntrlog2bnd 27646 pntpbnd2 27649 pntibndlem2 27653 pntlemr 27664 ostth2lem2 27696 ostth3 27700 smcnlem 30729 minvecolem2 30907 stadd3i 32280 le2halvesd 32762 wrdt2ind 32920 dnibndlem9 36452 ismblfin 37621 itg2addnc 37634 ibladdnclem 37636 ftc1anclem7 37659 intlewftc 42018 aks4d1p1p2 42027 dvle2 42029 posbezout 42057 2np3bcnp1 42101 sticksstones7 42109 sticksstones12a 42114 sticksstones12 42115 metakunt29 42190 2xp3dxp2ge1d 42198 pell1qrgaplem 42829 pellqrex 42835 pellfundgt1 42839 areaquad 43177 imo72b2lem0 44127 int-ineq1stprincd 44154 dvdivbd 45844 fourierdlem30 46058 sge0xaddlem2 46355 carageniuncllem2 46443 |
Copyright terms: Public domain | W3C validator |