Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 397
∈ wcel 2107 class class class wbr 5149
(class class class)co 7409 ℝcr 11109
+ caddc 11113 ≤
cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: supadd
12182 o1add
15558 o1sub
15560 o1fsum
15759 sadcaddlem
16398 4sqlem11
16888 4sqlem12
16889 4sqlem15
16892 4sqlem16
16893 prdsxmetlem
23874 nrmmetd
24083 nmotri
24256 pcoass
24540 minveclem2
24943 ovollb2lem
25005 ovolunlem1a
25013 ovoliunlem1
25019 nulmbl2
25053 ioombl1lem4
25078 uniioombllem5
25104 itg2splitlem
25266 itg2addlem
25276 ibladdlem
25337 ulmbdd
25910 cxpaddle
26260 ang180lem2
26315 fsumharmonic
26516 lgamgulmlem3
26535 lgamgulmlem5
26537 ppiub
26707 lgsdirprm
26834 lgsqrlem2
26850 lgseisenlem2
26879 2sqlem8
26929 vmadivsumb
26986 dchrisumlem2
26993 dchrisum0lem1b
27018 mulog2sumlem1
27037 mulog2sumlem2
27038 selbergb
27052 selberg2b
27055 chpdifbndlem1
27056 logdivbnd
27059 selberg3lem2
27061 pntrlog2bnd
27087 pntpbnd2
27090 pntibndlem2
27094 pntlemr
27105 ostth2lem2
27137 ostth3
27141 smcnlem
29950 minvecolem2
30128 stadd3i
31501 le2halvesd
31968 wrdt2ind
32117 dnibndlem9
35362 ismblfin
36529 itg2addnc
36542 ibladdnclem
36544 ftc1anclem7
36567 intlewftc
40926 aks4d1p1p2
40935 dvle2
40937 2np3bcnp1
40960 sticksstones7
40968 sticksstones12a
40973 sticksstones12
40974 metakunt29
41013 2xp3dxp2ge1d
41022 pell1qrgaplem
41611 pellqrex
41617 pellfundgt1
41621 areaquad
41965 imo72b2lem0
42917 int-ineq1stprincd
42944 dvdivbd
44639 fourierdlem30
44853 sge0xaddlem2
45150 carageniuncllem2
45238 |