Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 396
∈ wcel 2106 class class class wbr 5148
(class class class)co 7411 ℝcr 11111
+ caddc 11115 ≤
cle 11251 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 |
This theorem is referenced by: supadd
12184 o1add
15560 o1sub
15562 o1fsum
15761 sadcaddlem
16400 4sqlem11
16890 4sqlem12
16891 4sqlem15
16894 4sqlem16
16895 prdsxmetlem
23881 nrmmetd
24090 nmotri
24263 pcoass
24547 minveclem2
24950 ovollb2lem
25012 ovolunlem1a
25020 ovoliunlem1
25026 nulmbl2
25060 ioombl1lem4
25085 uniioombllem5
25111 itg2splitlem
25273 itg2addlem
25283 ibladdlem
25344 ulmbdd
25917 cxpaddle
26267 ang180lem2
26322 fsumharmonic
26523 lgamgulmlem3
26542 lgamgulmlem5
26544 ppiub
26714 lgsdirprm
26841 lgsqrlem2
26857 lgseisenlem2
26886 2sqlem8
26936 vmadivsumb
26993 dchrisumlem2
27000 dchrisum0lem1b
27025 mulog2sumlem1
27044 mulog2sumlem2
27045 selbergb
27059 selberg2b
27062 chpdifbndlem1
27063 logdivbnd
27066 selberg3lem2
27068 pntrlog2bnd
27094 pntpbnd2
27097 pntibndlem2
27101 pntlemr
27112 ostth2lem2
27144 ostth3
27148 smcnlem
29988 minvecolem2
30166 stadd3i
31539 le2halvesd
32006 wrdt2ind
32155 dnibndlem9
35448 ismblfin
36615 itg2addnc
36628 ibladdnclem
36630 ftc1anclem7
36653 intlewftc
41012 aks4d1p1p2
41021 dvle2
41023 2np3bcnp1
41046 sticksstones7
41054 sticksstones12a
41059 sticksstones12
41060 metakunt29
41099 2xp3dxp2ge1d
41108 pell1qrgaplem
41693 pellqrex
41699 pellfundgt1
41703 areaquad
42047 imo72b2lem0
42999 int-ineq1stprincd
43026 dvdivbd
44718 fourierdlem30
44932 sge0xaddlem2
45229 carageniuncllem2
45317 |