| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version | ||
| Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) (Proof shortened by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
| Ref | Expression |
|---|---|
| le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | readdcld 11264 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℝ) |
| 4 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 5 | 4, 2 | readdcld 11264 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ∈ ℝ) |
| 6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 7 | 4, 6 | readdcld 11264 | . 2 ⊢ (𝜑 → (𝐶 + 𝐷) ∈ ℝ) |
| 8 | le2addd.5 | . . 3 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
| 9 | 1, 4, 2, 8 | leadd1dd 11851 | . 2 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐵)) |
| 10 | le2addd.6 | . . 3 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
| 11 | 2, 6, 4, 10 | leadd2dd 11852 | . 2 ⊢ (𝜑 → (𝐶 + 𝐵) ≤ (𝐶 + 𝐷)) |
| 12 | 3, 5, 7, 9, 11 | letrd 11392 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
| Copyright terms: Public domain | W3C validator |