Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 397
∈ wcel 2107 class class class wbr 5106
(class class class)co 7358 ℝcr 11051
+ caddc 11055 ≤
cle 11191 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 |
This theorem is referenced by: supadd
12124 o1add
15497 o1sub
15499 o1fsum
15699 sadcaddlem
16338 4sqlem11
16828 4sqlem12
16829 4sqlem15
16832 4sqlem16
16833 prdsxmetlem
23724 nrmmetd
23933 nmotri
24106 pcoass
24390 minveclem2
24793 ovollb2lem
24855 ovolunlem1a
24863 ovoliunlem1
24869 nulmbl2
24903 ioombl1lem4
24928 uniioombllem5
24954 itg2splitlem
25116 itg2addlem
25126 ibladdlem
25187 ulmbdd
25760 cxpaddle
26108 ang180lem2
26163 fsumharmonic
26364 lgamgulmlem3
26383 lgamgulmlem5
26385 ppiub
26555 lgsdirprm
26682 lgsqrlem2
26698 lgseisenlem2
26727 2sqlem8
26777 vmadivsumb
26834 dchrisumlem2
26841 dchrisum0lem1b
26866 mulog2sumlem1
26885 mulog2sumlem2
26886 selbergb
26900 selberg2b
26903 chpdifbndlem1
26904 logdivbnd
26907 selberg3lem2
26909 pntrlog2bnd
26935 pntpbnd2
26938 pntibndlem2
26942 pntlemr
26953 ostth2lem2
26985 ostth3
26989 smcnlem
29642 minvecolem2
29820 stadd3i
31193 le2halvesd
31663 wrdt2ind
31810 dnibndlem9
34952 ismblfin
36122 itg2addnc
36135 ibladdnclem
36137 ftc1anclem7
36160 intlewftc
40521 aks4d1p1p2
40530 dvle2
40532 2np3bcnp1
40555 sticksstones7
40563 sticksstones12a
40568 sticksstones12
40569 metakunt29
40608 2xp3dxp2ge1d
40617 pell1qrgaplem
41199 pellqrex
41205 pellfundgt1
41209 areaquad
41553 imo72b2lem0
42445 int-ineq1stprincd
42472 dvdivbd
44171 fourierdlem30
44385 sge0xaddlem2
44682 carageniuncllem2
44770 |