Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version |
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
Ref | Expression |
---|---|
le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | le2add 11165 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
8 | 3, 4, 5, 6, 7 | syl22anc 837 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 1, 2, 8 | mp2and 698 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5035 (class class class)co 7155 ℝcr 10579 + caddc 10583 ≤ cle 10719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 |
This theorem is referenced by: supadd 11650 o1add 15023 o1sub 15025 o1fsum 15221 sadcaddlem 15861 4sqlem11 16351 4sqlem12 16352 4sqlem15 16355 4sqlem16 16356 prdsxmetlem 23075 nrmmetd 23281 nmotri 23446 pcoass 23730 minveclem2 24131 ovollb2lem 24193 ovolunlem1a 24201 ovoliunlem1 24207 nulmbl2 24241 ioombl1lem4 24266 uniioombllem5 24292 itg2splitlem 24453 itg2addlem 24463 ibladdlem 24524 ulmbdd 25097 cxpaddle 25445 ang180lem2 25500 fsumharmonic 25701 lgamgulmlem3 25720 lgamgulmlem5 25722 ppiub 25892 lgsdirprm 26019 lgsqrlem2 26035 lgseisenlem2 26064 2sqlem8 26114 vmadivsumb 26171 dchrisumlem2 26178 dchrisum0lem1b 26203 mulog2sumlem1 26222 mulog2sumlem2 26223 selbergb 26237 selberg2b 26240 chpdifbndlem1 26241 logdivbnd 26244 selberg3lem2 26246 pntrlog2bnd 26272 pntpbnd2 26275 pntibndlem2 26279 pntlemr 26290 ostth2lem2 26322 ostth3 26326 smcnlem 28584 minvecolem2 28762 stadd3i 30135 le2halvesd 30606 wrdt2ind 30753 dnibndlem9 34241 ismblfin 35404 itg2addnc 35417 ibladdnclem 35419 ftc1anclem7 35442 intlewftc 39654 aks4d1p1p2 39662 dvle2 39664 2np3bcnp1 39671 metakunt29 39701 2xp3dxp2ge1d 39710 pell1qrgaplem 40215 pellqrex 40221 pellfundgt1 40225 areaquad 40567 imo72b2lem0 41270 int-ineq1stprincd 41299 dvdivbd 42959 fourierdlem30 43173 sge0xaddlem2 43467 carageniuncllem2 43555 |
Copyright terms: Public domain | W3C validator |