Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > le2addd | Structured version Visualization version GIF version |
Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
ltadd1d.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lt2addd.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
le2addd.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
le2addd.6 | ⊢ (𝜑 → 𝐵 ≤ 𝐷) |
Ref | Expression |
---|---|
le2addd | ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | le2addd.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐶) | |
2 | le2addd.6 | . 2 ⊢ (𝜑 → 𝐵 ≤ 𝐷) | |
3 | leidd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
4 | ltnegd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
5 | ltadd1d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
6 | lt2addd.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
7 | le2add 11387 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) | |
8 | 3, 4, 5, 6, 7 | syl22anc 835 | . 2 ⊢ (𝜑 → ((𝐴 ≤ 𝐶 ∧ 𝐵 ≤ 𝐷) → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷))) |
9 | 1, 2, 8 | mp2and 695 | 1 ⊢ (𝜑 → (𝐴 + 𝐵) ≤ (𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 + caddc 10805 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 |
This theorem is referenced by: supadd 11873 o1add 15251 o1sub 15253 o1fsum 15453 sadcaddlem 16092 4sqlem11 16584 4sqlem12 16585 4sqlem15 16588 4sqlem16 16589 prdsxmetlem 23429 nrmmetd 23636 nmotri 23809 pcoass 24093 minveclem2 24495 ovollb2lem 24557 ovolunlem1a 24565 ovoliunlem1 24571 nulmbl2 24605 ioombl1lem4 24630 uniioombllem5 24656 itg2splitlem 24818 itg2addlem 24828 ibladdlem 24889 ulmbdd 25462 cxpaddle 25810 ang180lem2 25865 fsumharmonic 26066 lgamgulmlem3 26085 lgamgulmlem5 26087 ppiub 26257 lgsdirprm 26384 lgsqrlem2 26400 lgseisenlem2 26429 2sqlem8 26479 vmadivsumb 26536 dchrisumlem2 26543 dchrisum0lem1b 26568 mulog2sumlem1 26587 mulog2sumlem2 26588 selbergb 26602 selberg2b 26605 chpdifbndlem1 26606 logdivbnd 26609 selberg3lem2 26611 pntrlog2bnd 26637 pntpbnd2 26640 pntibndlem2 26644 pntlemr 26655 ostth2lem2 26687 ostth3 26691 smcnlem 28960 minvecolem2 29138 stadd3i 30511 le2halvesd 30980 wrdt2ind 31127 dnibndlem9 34593 ismblfin 35745 itg2addnc 35758 ibladdnclem 35760 ftc1anclem7 35783 intlewftc 39997 aks4d1p1p2 40006 dvle2 40008 2np3bcnp1 40028 sticksstones7 40036 sticksstones12a 40041 sticksstones12 40042 metakunt29 40081 2xp3dxp2ge1d 40090 pell1qrgaplem 40611 pellqrex 40617 pellfundgt1 40621 areaquad 40963 imo72b2lem0 41665 int-ineq1stprincd 41692 dvdivbd 43354 fourierdlem30 43568 sge0xaddlem2 43862 carageniuncllem2 43950 |
Copyright terms: Public domain | W3C validator |