MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1 Structured version   Visualization version   GIF version

Theorem ioombl1 23846
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ioombl1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)

Proof of Theorem ioombl1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxr 12361 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ioossre 12648 . . . . 5 (𝐴(,)+∞) ⊆ ℝ
32a1i 11 . . . 4 (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆ ℝ)
4 elpwi 4463 . . . . . 6 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
5 simplrl 773 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑥 ⊆ ℝ)
6 simplrr 774 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → (vol*‘𝑥) ∈ ℝ)
7 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
8 eqid 2795 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 23764 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
105, 6, 7, 9syl3anc 1364 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
11 eqid 2795 . . . . . . . . . . 11 (𝐴(,)+∞) = (𝐴(,)+∞)
12 simplll 771 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ)
135adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ)
146adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈ ℝ)
15 simplr 765 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+)
16 eqid 2795 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩)))
17 eqid 2795 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩)))
18 simprl 767 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ))
19 elovolmlem 23758 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2018, 19sylib 219 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21 simprrl 777 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ran ((,) ∘ 𝑓))
22 simprrr 778 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦))
23 eqid 2795 . . . . . . . . . . 11 (1st ‘(𝑓𝑛)) = (1st ‘(𝑓𝑛))
24 eqid 2795 . . . . . . . . . . 11 (2nd ‘(𝑓𝑛)) = (2nd ‘(𝑓𝑛))
25 2fveq3 6543 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
2625breq1d 4972 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓𝑛)) ≤ 𝐴))
2726, 25ifbieq2d 4406 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) = if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))))
28 2fveq3 6543 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
2927, 28breq12d 4975 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)) ↔ if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛))))
3029, 27, 28ifbieq12d 4408 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))) = if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))))
3130, 28opeq12d 4718 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3231cbvmptv 5061 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3325, 30opeq12d 4718 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩ = ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3433cbvmptv 5061 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3511, 12, 13, 14, 15, 8, 16, 17, 20, 21, 22, 23, 24, 32, 34ioombl1lem4 23845 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑𝑚 ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3610, 35rexlimddv 3254 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3736ralrimiva 3149 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
38 inss1 4125 . . . . . . . . . . . 12 (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥
39 ovolsscl 23770 . . . . . . . . . . . 12 (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4038, 39mp3an1 1440 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4140adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
42 difss 4029 . . . . . . . . . . . 12 (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥
43 ovolsscl 23770 . . . . . . . . . . . 12 (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4442, 43mp3an1 1440 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4544adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4641, 45readdcld 10516 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ)
47 simprr 769 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
48 alrple 12449 . . . . . . . . 9 ((((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
4946, 47, 48syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
5037, 49mpbird 258 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))
5150expr 457 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
524, 51sylan2 592 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
5352ralrimiva 3149 . . . 4 (𝐴 ∈ ℝ → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
54 ismbl2 23811 . . . 4 ((𝐴(,)+∞) ∈ dom vol ↔ ((𝐴(,)+∞) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))))
553, 53, 54sylanbrc 583 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom vol)
56 oveq1 7023 . . . . 5 (𝐴 = +∞ → (𝐴(,)+∞) = (+∞(,)+∞))
57 iooid 12616 . . . . 5 (+∞(,)+∞) = ∅
5856, 57syl6eq 2847 . . . 4 (𝐴 = +∞ → (𝐴(,)+∞) = ∅)
59 0mbl 23823 . . . 4 ∅ ∈ dom vol
6058, 59syl6eqel 2891 . . 3 (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom vol)
61 oveq1 7023 . . . . 5 (𝐴 = -∞ → (𝐴(,)+∞) = (-∞(,)+∞))
62 ioomax 12661 . . . . 5 (-∞(,)+∞) = ℝ
6361, 62syl6eq 2847 . . . 4 (𝐴 = -∞ → (𝐴(,)+∞) = ℝ)
64 rembl 23824 . . . 4 ℝ ∈ dom vol
6563, 64syl6eqel 2891 . . 3 (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom vol)
6655, 60, 653jaoi 1420 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom vol)
671, 66sylbi 218 1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3o 1079   = wceq 1522  wcel 2081  wral 3105  wrex 3106  cdif 3856  cin 3858  wss 3859  c0 4211  ifcif 4381  𝒫 cpw 4453  cop 4478   cuni 4745   class class class wbr 4962  cmpt 5041   × cxp 5441  dom cdm 5443  ran crn 5444  ccom 5447  wf 6221  cfv 6225  (class class class)co 7016  1st c1st 7543  2nd c2nd 7544  𝑚 cmap 8256  supcsup 8750  cr 10382  1c1 10384   + caddc 10386  +∞cpnf 10518  -∞cmnf 10519  *cxr 10520   < clt 10521  cle 10522  cmin 10717  cn 11486  +crp 12239  (,)cioo 12588  seqcseq 13219  abscabs 14427  vol*covol 23746  volcvol 23747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-2o 7954  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-oi 8820  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xadd 12358  df-ioo 12592  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-fl 13012  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-rlim 14680  df-sum 14877  df-xmet 20220  df-met 20221  df-ovol 23748  df-vol 23749
This theorem is referenced by:  icombl1  23847
  Copyright terms: Public domain W3C validator