MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1 Structured version   Visualization version   GIF version

Theorem ioombl1 24166
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ioombl1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)

Proof of Theorem ioombl1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxr 12514 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ioossre 12801 . . . . 5 (𝐴(,)+∞) ⊆ ℝ
32a1i 11 . . . 4 (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆ ℝ)
4 elpwi 4551 . . . . . 6 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
5 simplrl 775 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑥 ⊆ ℝ)
6 simplrr 776 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → (vol*‘𝑥) ∈ ℝ)
7 simpr 487 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
8 eqid 2824 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 24084 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
105, 6, 7, 9syl3anc 1367 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
11 eqid 2824 . . . . . . . . . . 11 (𝐴(,)+∞) = (𝐴(,)+∞)
12 simplll 773 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ)
135adantr 483 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ)
146adantr 483 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈ ℝ)
15 simplr 767 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+)
16 eqid 2824 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩)))
17 eqid 2824 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩)))
18 simprl 769 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
19 elovolmlem 24078 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2018, 19sylib 220 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21 simprrl 779 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ran ((,) ∘ 𝑓))
22 simprrr 780 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦))
23 eqid 2824 . . . . . . . . . . 11 (1st ‘(𝑓𝑛)) = (1st ‘(𝑓𝑛))
24 eqid 2824 . . . . . . . . . . 11 (2nd ‘(𝑓𝑛)) = (2nd ‘(𝑓𝑛))
25 2fveq3 6678 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
2625breq1d 5079 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓𝑛)) ≤ 𝐴))
2726, 25ifbieq2d 4495 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) = if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))))
28 2fveq3 6678 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
2927, 28breq12d 5082 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)) ↔ if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛))))
3029, 27, 28ifbieq12d 4497 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))) = if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))))
3130, 28opeq12d 4814 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3231cbvmptv 5172 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3325, 30opeq12d 4814 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩ = ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3433cbvmptv 5172 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3511, 12, 13, 14, 15, 8, 16, 17, 20, 21, 22, 23, 24, 32, 34ioombl1lem4 24165 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3610, 35rexlimddv 3294 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3736ralrimiva 3185 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
38 inss1 4208 . . . . . . . . . . . 12 (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥
39 ovolsscl 24090 . . . . . . . . . . . 12 (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4038, 39mp3an1 1444 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4140adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
42 difss 4111 . . . . . . . . . . . 12 (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥
43 ovolsscl 24090 . . . . . . . . . . . 12 (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4442, 43mp3an1 1444 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4544adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4641, 45readdcld 10673 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ)
47 simprr 771 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
48 alrple 12602 . . . . . . . . 9 ((((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
4946, 47, 48syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
5037, 49mpbird 259 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))
5150expr 459 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
524, 51sylan2 594 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
5352ralrimiva 3185 . . . 4 (𝐴 ∈ ℝ → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
54 ismbl2 24131 . . . 4 ((𝐴(,)+∞) ∈ dom vol ↔ ((𝐴(,)+∞) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))))
553, 53, 54sylanbrc 585 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom vol)
56 oveq1 7166 . . . . 5 (𝐴 = +∞ → (𝐴(,)+∞) = (+∞(,)+∞))
57 iooid 12769 . . . . 5 (+∞(,)+∞) = ∅
5856, 57syl6eq 2875 . . . 4 (𝐴 = +∞ → (𝐴(,)+∞) = ∅)
59 0mbl 24143 . . . 4 ∅ ∈ dom vol
6058, 59eqeltrdi 2924 . . 3 (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom vol)
61 oveq1 7166 . . . . 5 (𝐴 = -∞ → (𝐴(,)+∞) = (-∞(,)+∞))
62 ioomax 12814 . . . . 5 (-∞(,)+∞) = ℝ
6361, 62syl6eq 2875 . . . 4 (𝐴 = -∞ → (𝐴(,)+∞) = ℝ)
64 rembl 24144 . . . 4 ℝ ∈ dom vol
6563, 64eqeltrdi 2924 . . 3 (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom vol)
6655, 60, 653jaoi 1423 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom vol)
671, 66sylbi 219 1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082   = wceq 1536  wcel 2113  wral 3141  wrex 3142  cdif 3936  cin 3938  wss 3939  c0 4294  ifcif 4470  𝒫 cpw 4542  cop 4576   cuni 4841   class class class wbr 5069  cmpt 5149   × cxp 5556  dom cdm 5558  ran crn 5559  ccom 5562  wf 6354  cfv 6358  (class class class)co 7159  1st c1st 7690  2nd c2nd 7691  m cmap 8409  supcsup 8907  cr 10539  1c1 10541   + caddc 10543  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   < clt 10678  cle 10679  cmin 10873  cn 11641  +crp 12392  (,)cioo 12741  seqcseq 13372  abscabs 14596  vol*covol 24066  volcvol 24067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-dju 9333  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-xmet 20541  df-met 20542  df-ovol 24068  df-vol 24069
This theorem is referenced by:  icombl1  24167
  Copyright terms: Public domain W3C validator