MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ioombl1 Structured version   Visualization version   GIF version

Theorem ioombl1 25461
Description: An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.)
Assertion
Ref Expression
ioombl1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)

Proof of Theorem ioombl1
Dummy variables 𝑓 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxr 13018 . 2 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 ioossre 13310 . . . . 5 (𝐴(,)+∞) ⊆ ℝ
32a1i 11 . . . 4 (𝐴 ∈ ℝ → (𝐴(,)+∞) ⊆ ℝ)
4 elpwi 4558 . . . . . 6 (𝑥 ∈ 𝒫 ℝ → 𝑥 ⊆ ℝ)
5 simplrl 776 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑥 ⊆ ℝ)
6 simplrr 777 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → (vol*‘𝑥) ∈ ℝ)
7 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℝ+)
8 eqid 2729 . . . . . . . . . . . 12 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
98ovolgelb 25379 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
105, 6, 7, 9syl3anc 1373 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))
11 eqid 2729 . . . . . . . . . . 11 (𝐴(,)+∞) = (𝐴(,)+∞)
12 simplll 774 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝐴 ∈ ℝ)
135adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ⊆ ℝ)
146adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → (vol*‘𝑥) ∈ ℝ)
15 simplr 768 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑦 ∈ ℝ+)
16 eqid 2729 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩)))
17 eqid 2729 . . . . . . . . . . 11 seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩))) = seq1( + , ((abs ∘ − ) ∘ (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩)))
18 simprl 770 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
19 elovolmlem 25373 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2018, 19sylib 218 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
21 simprrl 780 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → 𝑥 ran ((,) ∘ 𝑓))
22 simprrr 781 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦))
23 eqid 2729 . . . . . . . . . . 11 (1st ‘(𝑓𝑛)) = (1st ‘(𝑓𝑛))
24 eqid 2729 . . . . . . . . . . 11 (2nd ‘(𝑓𝑛)) = (2nd ‘(𝑓𝑛))
25 2fveq3 6827 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1st ‘(𝑓𝑚)) = (1st ‘(𝑓𝑛)))
2625breq1d 5102 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 → ((1st ‘(𝑓𝑚)) ≤ 𝐴 ↔ (1st ‘(𝑓𝑛)) ≤ 𝐴))
2726, 25ifbieq2d 4503 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) = if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))))
28 2fveq3 6827 . . . . . . . . . . . . . . 15 (𝑚 = 𝑛 → (2nd ‘(𝑓𝑚)) = (2nd ‘(𝑓𝑛)))
2927, 28breq12d 5105 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)) ↔ if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛))))
3029, 27, 28ifbieq12d 4505 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))) = if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))))
3130, 28opeq12d 4832 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩ = ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3231cbvmptv 5196 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚))⟩) = (𝑛 ∈ ℕ ↦ ⟨if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛))⟩)
3325, 30opeq12d 4832 . . . . . . . . . . . 12 (𝑚 = 𝑛 → ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩ = ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3433cbvmptv 5196 . . . . . . . . . . 11 (𝑚 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑚)), if(if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))) ≤ (2nd ‘(𝑓𝑚)), if((1st ‘(𝑓𝑚)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑚))), (2nd ‘(𝑓𝑚)))⟩) = (𝑛 ∈ ℕ ↦ ⟨(1st ‘(𝑓𝑛)), if(if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))) ≤ (2nd ‘(𝑓𝑛)), if((1st ‘(𝑓𝑛)) ≤ 𝐴, 𝐴, (1st ‘(𝑓𝑛))), (2nd ‘(𝑓𝑛)))⟩)
3511, 12, 13, 14, 15, 8, 16, 17, 20, 21, 22, 23, 24, 32, 34ioombl1lem4 25460 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) ∧ (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ (𝑥 ran ((,) ∘ 𝑓) ∧ sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ≤ ((vol*‘𝑥) + 𝑦)))) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3610, 35rexlimddv 3136 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) ∧ 𝑦 ∈ ℝ+) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
3736ralrimiva 3121 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦))
38 inss1 4188 . . . . . . . . . . . 12 (𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥
39 ovolsscl 25385 . . . . . . . . . . . 12 (((𝑥 ∩ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4038, 39mp3an1 1450 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
4140adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∩ (𝐴(,)+∞))) ∈ ℝ)
42 difss 4087 . . . . . . . . . . . 12 (𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥
43 ovolsscl 25385 . . . . . . . . . . . 12 (((𝑥 ∖ (𝐴(,)+∞)) ⊆ 𝑥𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4442, 43mp3an1 1450 . . . . . . . . . . 11 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4544adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘(𝑥 ∖ (𝐴(,)+∞))) ∈ ℝ)
4641, 45readdcld 11144 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ)
47 simprr 772 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (vol*‘𝑥) ∈ ℝ)
48 alrple 13108 . . . . . . . . 9 ((((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ∈ ℝ ∧ (vol*‘𝑥) ∈ ℝ) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
4946, 47, 48syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → (((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥) ↔ ∀𝑦 ∈ ℝ+ ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ ((vol*‘𝑥) + 𝑦)))
5037, 49mpbird 257 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)) → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))
5150expr 456 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ⊆ ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
524, 51sylan2 593 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ 𝒫 ℝ) → ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
5352ralrimiva 3121 . . . 4 (𝐴 ∈ ℝ → ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥)))
54 ismbl2 25426 . . . 4 ((𝐴(,)+∞) ∈ dom vol ↔ ((𝐴(,)+∞) ⊆ ℝ ∧ ∀𝑥 ∈ 𝒫 ℝ((vol*‘𝑥) ∈ ℝ → ((vol*‘(𝑥 ∩ (𝐴(,)+∞))) + (vol*‘(𝑥 ∖ (𝐴(,)+∞)))) ≤ (vol*‘𝑥))))
553, 53, 54sylanbrc 583 . . 3 (𝐴 ∈ ℝ → (𝐴(,)+∞) ∈ dom vol)
56 oveq1 7356 . . . . 5 (𝐴 = +∞ → (𝐴(,)+∞) = (+∞(,)+∞))
57 iooid 13276 . . . . 5 (+∞(,)+∞) = ∅
5856, 57eqtrdi 2780 . . . 4 (𝐴 = +∞ → (𝐴(,)+∞) = ∅)
59 0mbl 25438 . . . 4 ∅ ∈ dom vol
6058, 59eqeltrdi 2836 . . 3 (𝐴 = +∞ → (𝐴(,)+∞) ∈ dom vol)
61 oveq1 7356 . . . . 5 (𝐴 = -∞ → (𝐴(,)+∞) = (-∞(,)+∞))
62 ioomax 13325 . . . . 5 (-∞(,)+∞) = ℝ
6361, 62eqtrdi 2780 . . . 4 (𝐴 = -∞ → (𝐴(,)+∞) = ℝ)
64 rembl 25439 . . . 4 ℝ ∈ dom vol
6563, 64eqeltrdi 2836 . . 3 (𝐴 = -∞ → (𝐴(,)+∞) ∈ dom vol)
6655, 60, 653jaoi 1430 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴(,)+∞) ∈ dom vol)
671, 66sylbi 217 1 (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cdif 3900  cin 3902  wss 3903  c0 4284  ifcif 4476  𝒫 cpw 4551  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  m cmap 8753  supcsup 9330  cr 11008  1c1 11010   + caddc 11012  +∞cpnf 11146  -∞cmnf 11147  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  +crp 12893  (,)cioo 13248  seqcseq 13908  abscabs 15141  vol*covol 25361  volcvol 25362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xadd 13015  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-xmet 21254  df-met 21255  df-ovol 25363  df-vol 25364
This theorem is referenced by:  icombl1  25462
  Copyright terms: Public domain W3C validator