![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > min2 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11282 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11282 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin2 13181 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ifcif 4524 class class class wbr 5142 ℝcr 11129 ℝ*cxr 11269 ≤ cle 11271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-pre-lttri 11204 ax-pre-lttrn 11205 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 |
This theorem is referenced by: ssfzunsnext 13570 reccn2 15565 ssblex 24321 nlmvscnlem1 24590 nrginvrcnlem 24595 icccmplem2 24726 xlebnum 24878 ipcnlem1 25160 ivthlem2 25368 ovolicc2lem5 25437 ioombl1lem1 25474 mbfi1fseqlem4 25635 mbfi1fseqlem5 25636 aalioulem5 26258 aalioulem6 26259 cxpcn3lem 26669 ftalem5 26996 chtdif 27077 ppidif 27082 chebbnd1lem1 27389 itg2addnc 37082 min2d 44778 mullimc 44927 mullimcf 44934 limcleqr 44955 addlimc 44959 0ellimcdiv 44960 limclner 44962 stoweidlem5 45316 fourierdlem104 45521 ioorrnopnlem 45615 hoidmv1lelem2 45903 smfmullem1 46102 |
Copyright terms: Public domain | W3C validator |