MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  min2 Structured version   Visualization version   GIF version

Theorem min2 13211
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.)
Assertion
Ref Expression
min2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)

Proof of Theorem min2
StepHypRef Expression
1 rexr 11286 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11286 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xrmin2 13199 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
41, 2, 3syl2an 596 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  ifcif 4505   class class class wbr 5124  cr 11133  *cxr 11273  cle 11275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280
This theorem is referenced by:  ssfzunsnext  13591  reccn2  15618  ssblex  24372  nlmvscnlem1  24630  nrginvrcnlem  24635  icccmplem2  24768  xlebnum  24920  ipcnlem1  25202  ivthlem2  25410  ovolicc2lem5  25479  ioombl1lem1  25516  mbfi1fseqlem4  25676  mbfi1fseqlem5  25677  aalioulem5  26301  aalioulem6  26302  cxpcn3lem  26714  ftalem5  27044  chtdif  27125  ppidif  27130  chebbnd1lem1  27437  itg2addnc  37703  min2d  45480  mullimc  45625  mullimcf  45632  limcleqr  45653  addlimc  45657  0ellimcdiv  45658  limclner  45660  stoweidlem5  46014  fourierdlem104  46219  ioorrnopnlem  46313  hoidmv1lelem2  46601  smfmullem1  46800
  Copyright terms: Public domain W3C validator