MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  min2 Structured version   Visualization version   GIF version

Theorem min2 13193
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.)
Assertion
Ref Expression
min2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)

Proof of Theorem min2
StepHypRef Expression
1 rexr 11282 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11282 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xrmin2 13181 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
41, 2, 3syl2an 595 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2099  ifcif 4524   class class class wbr 5142  cr 11129  *cxr 11269  cle 11271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-pre-lttri 11204  ax-pre-lttrn 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276
This theorem is referenced by:  ssfzunsnext  13570  reccn2  15565  ssblex  24321  nlmvscnlem1  24590  nrginvrcnlem  24595  icccmplem2  24726  xlebnum  24878  ipcnlem1  25160  ivthlem2  25368  ovolicc2lem5  25437  ioombl1lem1  25474  mbfi1fseqlem4  25635  mbfi1fseqlem5  25636  aalioulem5  26258  aalioulem6  26259  cxpcn3lem  26669  ftalem5  26996  chtdif  27077  ppidif  27082  chebbnd1lem1  27389  itg2addnc  37082  min2d  44778  mullimc  44927  mullimcf  44934  limcleqr  44955  addlimc  44959  0ellimcdiv  44960  limclner  44962  stoweidlem5  45316  fourierdlem104  45521  ioorrnopnlem  45615  hoidmv1lelem2  45903  smfmullem1  46102
  Copyright terms: Public domain W3C validator