| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > min2 | Structured version Visualization version GIF version | ||
| Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
| Ref | Expression |
|---|---|
| min2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 11290 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 11290 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrmin2 13203 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ifcif 4507 class class class wbr 5125 ℝcr 11137 ℝ*cxr 11277 ≤ cle 11279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 |
| This theorem is referenced by: ssfzunsnext 13592 reccn2 15616 ssblex 24402 nlmvscnlem1 24662 nrginvrcnlem 24667 icccmplem2 24800 xlebnum 24952 ipcnlem1 25234 ivthlem2 25442 ovolicc2lem5 25511 ioombl1lem1 25548 mbfi1fseqlem4 25708 mbfi1fseqlem5 25709 aalioulem5 26333 aalioulem6 26334 cxpcn3lem 26745 ftalem5 27075 chtdif 27156 ppidif 27161 chebbnd1lem1 27468 itg2addnc 37622 min2d 45429 mullimc 45576 mullimcf 45583 limcleqr 45604 addlimc 45608 0ellimcdiv 45609 limclner 45611 stoweidlem5 45965 fourierdlem104 46170 ioorrnopnlem 46264 hoidmv1lelem2 46552 smfmullem1 46751 |
| Copyright terms: Public domain | W3C validator |