MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  min2 Structured version   Visualization version   GIF version

Theorem min2 13215
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.)
Assertion
Ref Expression
min2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)

Proof of Theorem min2
StepHypRef Expression
1 rexr 11290 . 2 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 11290 . 2 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
3 xrmin2 13203 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
41, 2, 3syl2an 596 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴𝐵, 𝐴, 𝐵) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  ifcif 4507   class class class wbr 5125  cr 11137  *cxr 11277  cle 11279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284
This theorem is referenced by:  ssfzunsnext  13592  reccn2  15616  ssblex  24402  nlmvscnlem1  24662  nrginvrcnlem  24667  icccmplem2  24800  xlebnum  24952  ipcnlem1  25234  ivthlem2  25442  ovolicc2lem5  25511  ioombl1lem1  25548  mbfi1fseqlem4  25708  mbfi1fseqlem5  25709  aalioulem5  26333  aalioulem6  26334  cxpcn3lem  26745  ftalem5  27075  chtdif  27156  ppidif  27161  chebbnd1lem1  27468  itg2addnc  37622  min2d  45429  mullimc  45576  mullimcf  45583  limcleqr  45604  addlimc  45608  0ellimcdiv  45609  limclner  45611  stoweidlem5  45965  fourierdlem104  46170  ioorrnopnlem  46264  hoidmv1lelem2  46552  smfmullem1  46751
  Copyright terms: Public domain W3C validator