![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > min2 | Structured version Visualization version GIF version |
Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007.) |
Ref | Expression |
---|---|
min2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 11336 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 11336 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrmin2 13240 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) | |
4 | 1, 2, 3 | syl2an 595 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) ≤ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ifcif 4548 class class class wbr 5166 ℝcr 11183 ℝ*cxr 11323 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: ssfzunsnext 13629 reccn2 15643 ssblex 24459 nlmvscnlem1 24728 nrginvrcnlem 24733 icccmplem2 24864 xlebnum 25016 ipcnlem1 25298 ivthlem2 25506 ovolicc2lem5 25575 ioombl1lem1 25612 mbfi1fseqlem4 25773 mbfi1fseqlem5 25774 aalioulem5 26396 aalioulem6 26397 cxpcn3lem 26808 ftalem5 27138 chtdif 27219 ppidif 27224 chebbnd1lem1 27531 itg2addnc 37634 min2d 45388 mullimc 45537 mullimcf 45544 limcleqr 45565 addlimc 45569 0ellimcdiv 45570 limclner 45572 stoweidlem5 45926 fourierdlem104 46131 ioorrnopnlem 46225 hoidmv1lelem2 46513 smfmullem1 46712 |
Copyright terms: Public domain | W3C validator |