| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ioombl1 25485. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| Ref | Expression |
|---|---|
| ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
| ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
| ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
| ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
| ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
| ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
| ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
| ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
| ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
| ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| Ref | Expression |
|---|---|
| ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | eqid 2731 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
| 3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 4 | 2, 3 | ovolsf 25395 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 6 | 5 | frnd 6654 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 7 | icossxr 13327 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 8 | 6, 7 | sstrdi 3942 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
| 9 | supxrcl 13209 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
| 11 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
| 12 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 13 | 12 | rpred 12929 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 14 | 11, 13 | readdcld 11136 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 15 | mnfxr 11164 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 17 | 5 | ffnd 6647 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
| 18 | 1nn 12131 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | fnfvelrn 7008 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
| 21 | 8, 20 | sseldd 3930 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
| 22 | rge0ssre 13351 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 23 | ffvelcdm 7009 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
| 24 | 5, 18, 23 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
| 25 | 22, 24 | sselid 3927 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
| 26 | 25 | mnfltd 13018 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
| 27 | supxrub 13218 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
| 28 | 8, 20, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
| 29 | 16, 21, 10, 26, 28 | xrltletrd 13055 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
| 30 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
| 31 | xrre 13063 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
| 32 | 10, 14, 29, 30, 31 | syl22anc 838 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 ifcif 4470 〈cop 4577 ∪ cuni 4854 class class class wbr 5086 ↦ cmpt 5167 × cxp 5609 ran crn 5612 ∘ ccom 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 1st c1st 7914 2nd c2nd 7915 supcsup 9319 ℝcr 11000 0cc0 11001 1c1 11002 + caddc 11004 +∞cpnf 11138 -∞cmnf 11139 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 − cmin 11339 ℕcn 12120 ℝ+crp 12885 (,)cioo 13240 [,)cico 13242 seqcseq 13903 abscabs 15136 vol*covol 25385 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 |
| This theorem is referenced by: ioombl1lem4 25484 |
| Copyright terms: Public domain | W3C validator |