![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ioombl1 24949. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ ⟨if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄⟩) |
ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ ⟨𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)⟩) |
Ref | Expression |
---|---|
ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2733 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
4 | 2, 3 | ovolsf 24859 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6680 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
7 | icossxr 13358 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
8 | 6, 7 | sstrdi 3960 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
9 | supxrcl 13243 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
11 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
12 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
13 | 12 | rpred 12965 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
14 | 11, 13 | readdcld 11192 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
15 | mnfxr 11220 | . . . 4 ⊢ -∞ ∈ ℝ* | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
17 | 5 | ffnd 6673 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
18 | 1nn 12172 | . . . . 5 ⊢ 1 ∈ ℕ | |
19 | fnfvelrn 7035 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
20 | 17, 18, 19 | sylancl 587 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
21 | 8, 20 | sseldd 3949 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
22 | rge0ssre 13382 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
23 | ffvelcdm 7036 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
24 | 5, 18, 23 | sylancl 587 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
25 | 22, 24 | sselid 3946 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
26 | 25 | mnfltd 13053 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
27 | supxrub 13252 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
28 | 8, 20, 27 | syl2anc 585 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
29 | 16, 21, 10, 26, 28 | xrltletrd 13089 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
30 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
31 | xrre 13097 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
32 | 10, 14, 29, 30, 31 | syl22anc 838 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ∩ cin 3913 ⊆ wss 3914 ifcif 4490 ⟨cop 4596 ∪ cuni 4869 class class class wbr 5109 ↦ cmpt 5192 × cxp 5635 ran crn 5638 ∘ ccom 5641 Fn wfn 6495 ⟶wf 6496 ‘cfv 6500 (class class class)co 7361 1st c1st 7923 2nd c2nd 7924 supcsup 9384 ℝcr 11058 0cc0 11059 1c1 11060 + caddc 11062 +∞cpnf 11194 -∞cmnf 11195 ℝ*cxr 11196 < clt 11197 ≤ cle 11198 − cmin 11393 ℕcn 12161 ℝ+crp 12923 (,)cioo 13273 [,)cico 13275 seqcseq 13915 abscabs 15128 vol*covol 24849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-er 8654 df-en 8890 df-dom 8891 df-sdom 8892 df-sup 9386 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-rp 12924 df-ico 13279 df-fz 13434 df-seq 13916 df-exp 13977 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 |
This theorem is referenced by: ioombl1lem4 24948 |
Copyright terms: Public domain | W3C validator |