| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ioombl1 25461. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| Ref | Expression |
|---|---|
| ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
| ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
| ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
| ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
| ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
| ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
| ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
| ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
| ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
| ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| Ref | Expression |
|---|---|
| ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
| 3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 4 | 2, 3 | ovolsf 25371 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 6 | 5 | frnd 6660 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 7 | icossxr 13335 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 8 | 6, 7 | sstrdi 3948 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
| 9 | supxrcl 13217 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
| 11 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
| 12 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 13 | 12 | rpred 12937 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 14 | 11, 13 | readdcld 11144 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 15 | mnfxr 11172 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 17 | 5 | ffnd 6653 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
| 18 | 1nn 12139 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | fnfvelrn 7014 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
| 21 | 8, 20 | sseldd 3936 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
| 22 | rge0ssre 13359 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 23 | ffvelcdm 7015 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
| 24 | 5, 18, 23 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
| 25 | 22, 24 | sselid 3933 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
| 26 | 25 | mnfltd 13026 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
| 27 | supxrub 13226 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
| 28 | 8, 20, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
| 29 | 16, 21, 10, 26, 28 | xrltletrd 13063 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
| 30 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
| 31 | xrre 13071 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
| 32 | 10, 14, 29, 30, 31 | syl22anc 838 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 ifcif 4476 〈cop 4583 ∪ cuni 4858 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 ran crn 5620 ∘ ccom 5623 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 supcsup 9330 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 +∞cpnf 11146 -∞cmnf 11147 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 − cmin 11347 ℕcn 12128 ℝ+crp 12893 (,)cioo 13248 [,)cico 13250 seqcseq 13908 abscabs 15141 vol*covol 25361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-ico 13254 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 |
| This theorem is referenced by: ioombl1lem4 25460 |
| Copyright terms: Public domain | W3C validator |