Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version |
Description: Lemma for ioombl1 24726. (Contributed by Mario Carneiro, 18-Aug-2014.) |
Ref | Expression |
---|---|
ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
Ref | Expression |
---|---|
ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
2 | eqid 2738 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
4 | 2, 3 | ovolsf 24636 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
6 | 5 | frnd 6608 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
7 | icossxr 13164 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
8 | 6, 7 | sstrdi 3933 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
9 | supxrcl 13049 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
11 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
12 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
13 | 12 | rpred 12772 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
14 | 11, 13 | readdcld 11004 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
15 | mnfxr 11032 | . . . 4 ⊢ -∞ ∈ ℝ* | |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
17 | 5 | ffnd 6601 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
18 | 1nn 11984 | . . . . 5 ⊢ 1 ∈ ℕ | |
19 | fnfvelrn 6958 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
21 | 8, 20 | sseldd 3922 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
22 | rge0ssre 13188 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
23 | ffvelrn 6959 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
24 | 5, 18, 23 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
25 | 22, 24 | sselid 3919 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
26 | 25 | mnfltd 12860 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
27 | supxrub 13058 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
28 | 8, 20, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
29 | 16, 21, 10, 26, 28 | xrltletrd 12895 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
30 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
31 | xrre 12903 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
32 | 10, 14, 29, 30, 31 | syl22anc 836 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∩ cin 3886 ⊆ wss 3887 ifcif 4459 〈cop 4567 ∪ cuni 4839 class class class wbr 5074 ↦ cmpt 5157 × cxp 5587 ran crn 5590 ∘ ccom 5593 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 supcsup 9199 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 +∞cpnf 11006 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℝ+crp 12730 (,)cioo 13079 [,)cico 13081 seqcseq 13721 abscabs 14945 vol*covol 24626 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 |
This theorem is referenced by: ioombl1lem4 24725 |
Copyright terms: Public domain | W3C validator |