| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioombl1lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for ioombl1 25463. (Contributed by Mario Carneiro, 18-Aug-2014.) |
| Ref | Expression |
|---|---|
| ioombl1.b | ⊢ 𝐵 = (𝐴(,)+∞) |
| ioombl1.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ioombl1.e | ⊢ (𝜑 → 𝐸 ⊆ ℝ) |
| ioombl1.v | ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) |
| ioombl1.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| ioombl1.s | ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) |
| ioombl1.t | ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) |
| ioombl1.u | ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) |
| ioombl1.f1 | ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) |
| ioombl1.f2 | ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) |
| ioombl1.f3 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) |
| ioombl1.p | ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) |
| ioombl1.q | ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) |
| ioombl1.g | ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) |
| ioombl1.h | ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) |
| Ref | Expression |
|---|---|
| ioombl1lem2 | ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl1.f1 | . . . . . 6 ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) | |
| 2 | eqid 2729 | . . . . . . 7 ⊢ ((abs ∘ − ) ∘ 𝐹) = ((abs ∘ − ) ∘ 𝐹) | |
| 3 | ioombl1.s | . . . . . . 7 ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) | |
| 4 | 2, 3 | ovolsf 25373 | . . . . . 6 ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝑆:ℕ⟶(0[,)+∞)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆:ℕ⟶(0[,)+∞)) |
| 6 | 5 | frnd 6696 | . . . 4 ⊢ (𝜑 → ran 𝑆 ⊆ (0[,)+∞)) |
| 7 | icossxr 13393 | . . . 4 ⊢ (0[,)+∞) ⊆ ℝ* | |
| 8 | 6, 7 | sstrdi 3959 | . . 3 ⊢ (𝜑 → ran 𝑆 ⊆ ℝ*) |
| 9 | supxrcl 13275 | . . 3 ⊢ (ran 𝑆 ⊆ ℝ* → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ*) |
| 11 | ioombl1.v | . . 3 ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) | |
| 12 | ioombl1.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 13 | 12 | rpred 12995 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 14 | 11, 13 | readdcld 11203 | . 2 ⊢ (𝜑 → ((vol*‘𝐸) + 𝐶) ∈ ℝ) |
| 15 | mnfxr 11231 | . . . 4 ⊢ -∞ ∈ ℝ* | |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → -∞ ∈ ℝ*) |
| 17 | 5 | ffnd 6689 | . . . . 5 ⊢ (𝜑 → 𝑆 Fn ℕ) |
| 18 | 1nn 12197 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 19 | fnfvelrn 7052 | . . . . 5 ⊢ ((𝑆 Fn ℕ ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ ran 𝑆) | |
| 20 | 17, 18, 19 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ran 𝑆) |
| 21 | 8, 20 | sseldd 3947 | . . 3 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ*) |
| 22 | rge0ssre 13417 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 23 | ffvelcdm 7053 | . . . . . 6 ⊢ ((𝑆:ℕ⟶(0[,)+∞) ∧ 1 ∈ ℕ) → (𝑆‘1) ∈ (0[,)+∞)) | |
| 24 | 5, 18, 23 | sylancl 586 | . . . . 5 ⊢ (𝜑 → (𝑆‘1) ∈ (0[,)+∞)) |
| 25 | 22, 24 | sselid 3944 | . . . 4 ⊢ (𝜑 → (𝑆‘1) ∈ ℝ) |
| 26 | 25 | mnfltd 13084 | . . 3 ⊢ (𝜑 → -∞ < (𝑆‘1)) |
| 27 | supxrub 13284 | . . . 4 ⊢ ((ran 𝑆 ⊆ ℝ* ∧ (𝑆‘1) ∈ ran 𝑆) → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) | |
| 28 | 8, 20, 27 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆‘1) ≤ sup(ran 𝑆, ℝ*, < )) |
| 29 | 16, 21, 10, 26, 28 | xrltletrd 13121 | . 2 ⊢ (𝜑 → -∞ < sup(ran 𝑆, ℝ*, < )) |
| 30 | ioombl1.f3 | . 2 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) | |
| 31 | xrre 13129 | . 2 ⊢ (((sup(ran 𝑆, ℝ*, < ) ∈ ℝ* ∧ ((vol*‘𝐸) + 𝐶) ∈ ℝ) ∧ (-∞ < sup(ran 𝑆, ℝ*, < ) ∧ sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶))) → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | |
| 32 | 10, 14, 29, 30, 31 | syl22anc 838 | 1 ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ⊆ wss 3914 ifcif 4488 〈cop 4595 ∪ cuni 4871 class class class wbr 5107 ↦ cmpt 5188 × cxp 5636 ran crn 5639 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 2nd c2nd 7967 supcsup 9391 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 -∞cmnf 11206 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 − cmin 11405 ℕcn 12186 ℝ+crp 12951 (,)cioo 13306 [,)cico 13308 seqcseq 13966 abscabs 15200 vol*covol 25363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 |
| This theorem is referenced by: ioombl1lem4 25462 |
| Copyright terms: Public domain | W3C validator |