Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreunrn Structured version   Visualization version   GIF version

Theorem icoreunrn 35176
Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreunrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreunrn ℝ = 𝐼

Proof of Theorem icoreunrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10768 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2 peano2re 10894 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
3 rexr 10768 . . . . . . . 8 ((𝑥 + 1) ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
42, 3syl 17 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
5 ltp1 11561 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
6 lbico1 12878 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*𝑥 < (𝑥 + 1)) → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
71, 4, 5, 6syl3anc 1372 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
8 df-ov 7176 . . . . . 6 (𝑥[,)(𝑥 + 1)) = ([,)‘⟨𝑥, (𝑥 + 1)⟩)
97, 8eleqtrdi 2844 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ([,)‘⟨𝑥, (𝑥 + 1)⟩))
10 opelxpi 5563 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
112, 10mpdan 687 . . . . . 6 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
12 fvres 6696 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
1311, 12syl 17 . . . . 5 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
149, 13eleqtrrd 2837 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩))
15 icoreresf 35169 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
1615fdmi 6517 . . . . . . 7 dom ([,) ↾ (ℝ × ℝ)) = (ℝ × ℝ)
1710, 16eleqtrrdi 2845 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
182, 17mpdan 687 . . . . 5 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
19 ffun 6508 . . . . . . . 8 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → Fun ([,) ↾ (ℝ × ℝ)))
2015, 19ax-mp 5 . . . . . . 7 Fun ([,) ↾ (ℝ × ℝ))
21 fvelrn 6857 . . . . . . 7 ((Fun ([,) ↾ (ℝ × ℝ)) ∧ ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ))) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
2220, 21mpan 690 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
23 icoreunrn.1 . . . . . . 7 𝐼 = ([,) “ (ℝ × ℝ))
24 df-ima 5539 . . . . . . 7 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
2523, 24eqtri 2762 . . . . . 6 𝐼 = ran ([,) ↾ (ℝ × ℝ))
2622, 25eleqtrrdi 2845 . . . . 5 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
2718, 26syl 17 . . . 4 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
28 elunii 4802 . . . 4 ((𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∧ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼) → 𝑥 𝐼)
2914, 27, 28syl2anc 587 . . 3 (𝑥 ∈ ℝ → 𝑥 𝐼)
3029ssriv 3882 . 2 ℝ ⊆ 𝐼
31 frn 6512 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ)
3215, 31ax-mp 5 . . . 4 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
3325, 32eqsstri 3912 . . 3 𝐼 ⊆ 𝒫 ℝ
34 uniss 4805 . . . 4 (𝐼 ⊆ 𝒫 ℝ → 𝐼 𝒫 ℝ)
35 unipw 5310 . . . 4 𝒫 ℝ = ℝ
3634, 35sseqtrdi 3928 . . 3 (𝐼 ⊆ 𝒫 ℝ → 𝐼 ⊆ ℝ)
3733, 36ax-mp 5 . 2 𝐼 ⊆ ℝ
3830, 37eqssi 3894 1 ℝ = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1542  wcel 2114  wss 3844  𝒫 cpw 4489  cop 4523   cuni 4797   class class class wbr 5031   × cxp 5524  dom cdm 5526  ran crn 5527  cres 5528  cima 5529  Fun wfun 6334  wf 6336  cfv 6340  (class class class)co 7173  cr 10617  1c1 10619   + caddc 10621  *cxr 10755   < clt 10756  [,)cico 12826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-po 5443  df-so 5444  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-1st 7717  df-2nd 7718  df-er 8323  df-en 8559  df-dom 8560  df-sdom 8561  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-ico 12830
This theorem is referenced by:  istoprelowl  35177  relowlssretop  35180  relowlpssretop  35181
  Copyright terms: Public domain W3C validator