Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreunrn Structured version   Visualization version   GIF version

Theorem icoreunrn 35457
Description: The union of all closed-below, open-above intervals of reals is the set of reals. (Contributed by ML, 27-Jul-2020.)
Hypothesis
Ref Expression
icoreunrn.1 𝐼 = ([,) “ (ℝ × ℝ))
Assertion
Ref Expression
icoreunrn ℝ = 𝐼

Proof of Theorem icoreunrn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rexr 10952 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2 peano2re 11078 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ)
3 rexr 10952 . . . . . . . 8 ((𝑥 + 1) ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
42, 3syl 17 . . . . . . 7 (𝑥 ∈ ℝ → (𝑥 + 1) ∈ ℝ*)
5 ltp1 11745 . . . . . . 7 (𝑥 ∈ ℝ → 𝑥 < (𝑥 + 1))
6 lbico1 13062 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑥 + 1) ∈ ℝ*𝑥 < (𝑥 + 1)) → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
71, 4, 5, 6syl3anc 1369 . . . . . 6 (𝑥 ∈ ℝ → 𝑥 ∈ (𝑥[,)(𝑥 + 1)))
8 df-ov 7258 . . . . . 6 (𝑥[,)(𝑥 + 1)) = ([,)‘⟨𝑥, (𝑥 + 1)⟩)
97, 8eleqtrdi 2849 . . . . 5 (𝑥 ∈ ℝ → 𝑥 ∈ ([,)‘⟨𝑥, (𝑥 + 1)⟩))
10 opelxpi 5617 . . . . . . 7 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
112, 10mpdan 683 . . . . . 6 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ))
12 fvres 6775 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ (ℝ × ℝ) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
1311, 12syl 17 . . . . 5 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) = ([,)‘⟨𝑥, (𝑥 + 1)⟩))
149, 13eleqtrrd 2842 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩))
15 icoreresf 35450 . . . . . . . 8 ([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ
1615fdmi 6596 . . . . . . 7 dom ([,) ↾ (ℝ × ℝ)) = (ℝ × ℝ)
1710, 16eleqtrrdi 2850 . . . . . 6 ((𝑥 ∈ ℝ ∧ (𝑥 + 1) ∈ ℝ) → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
182, 17mpdan 683 . . . . 5 (𝑥 ∈ ℝ → ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)))
19 ffun 6587 . . . . . . . 8 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → Fun ([,) ↾ (ℝ × ℝ)))
2015, 19ax-mp 5 . . . . . . 7 Fun ([,) ↾ (ℝ × ℝ))
21 fvelrn 6936 . . . . . . 7 ((Fun ([,) ↾ (ℝ × ℝ)) ∧ ⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ))) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
2220, 21mpan 686 . . . . . 6 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ ran ([,) ↾ (ℝ × ℝ)))
23 icoreunrn.1 . . . . . . 7 𝐼 = ([,) “ (ℝ × ℝ))
24 df-ima 5593 . . . . . . 7 ([,) “ (ℝ × ℝ)) = ran ([,) ↾ (ℝ × ℝ))
2523, 24eqtri 2766 . . . . . 6 𝐼 = ran ([,) ↾ (ℝ × ℝ))
2622, 25eleqtrrdi 2850 . . . . 5 (⟨𝑥, (𝑥 + 1)⟩ ∈ dom ([,) ↾ (ℝ × ℝ)) → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
2718, 26syl 17 . . . 4 (𝑥 ∈ ℝ → (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼)
28 elunii 4841 . . . 4 ((𝑥 ∈ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∧ (([,) ↾ (ℝ × ℝ))‘⟨𝑥, (𝑥 + 1)⟩) ∈ 𝐼) → 𝑥 𝐼)
2914, 27, 28syl2anc 583 . . 3 (𝑥 ∈ ℝ → 𝑥 𝐼)
3029ssriv 3921 . 2 ℝ ⊆ 𝐼
31 frn 6591 . . . . 5 (([,) ↾ (ℝ × ℝ)):(ℝ × ℝ)⟶𝒫 ℝ → ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ)
3215, 31ax-mp 5 . . . 4 ran ([,) ↾ (ℝ × ℝ)) ⊆ 𝒫 ℝ
3325, 32eqsstri 3951 . . 3 𝐼 ⊆ 𝒫 ℝ
34 uniss 4844 . . . 4 (𝐼 ⊆ 𝒫 ℝ → 𝐼 𝒫 ℝ)
35 unipw 5360 . . . 4 𝒫 ℝ = ℝ
3634, 35sseqtrdi 3967 . . 3 (𝐼 ⊆ 𝒫 ℝ → 𝐼 ⊆ ℝ)
3733, 36ax-mp 5 . 2 𝐼 ⊆ ℝ
3830, 37eqssi 3933 1 ℝ = 𝐼
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  wss 3883  𝒫 cpw 4530  cop 4564   cuni 4836   class class class wbr 5070   × cxp 5578  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  [,)cico 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014
This theorem is referenced by:  istoprelowl  35458  relowlssretop  35461  relowlpssretop  35462
  Copyright terms: Public domain W3C validator