Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > minregex2 | Structured version Visualization version GIF version |
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
Ref | Expression |
---|---|
minregex2 | ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | minregex 41141 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | |
2 | eldifi 4061 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ ran card) | |
3 | iscard4 41140 | . . . . . . . . . . 11 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | |
4 | 2, 3 | sylibr 233 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ran card ∖ ω) → (card‘𝐴) = 𝐴) |
5 | 4 | adantr 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘𝐴) = 𝐴) |
6 | alephcard 9826 | . . . . . . . . . 10 ⊢ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) | |
7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) |
8 | 5, 7 | sseq12d 3954 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
9 | numth3 10226 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ dom card) | |
10 | alephon 9825 | . . . . . . . . . 10 ⊢ (ℵ‘𝑦) ∈ On | |
11 | onenon 9707 | . . . . . . . . . 10 ⊢ ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card) | |
12 | 10, 11 | mp1i 13 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ dom card) |
13 | carddom2 9735 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) | |
14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
15 | 8, 14 | bitr3d 280 | . . . . . . 7 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
16 | 15 | 3anbi2d 1440 | . . . . . 6 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
17 | 16 | rabbidva 3413 | . . . . 5 ⊢ (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
18 | 17 | inteqd 4884 | . . . 4 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
19 | 18 | eqeq2d 2749 | . . 3 ⊢ (𝐴 ∈ (ran card ∖ ω) → (𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
20 | 19 | rexbidv 3226 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
21 | 1, 20 | mpbid 231 | 1 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 ∩ cint 4879 class class class wbr 5074 dom cdm 5589 ran crn 5590 Oncon0 6266 ‘cfv 6433 ωcom 7712 ≼ cdom 8731 cardccrd 9693 ℵcale 9694 cfccf 9695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-ac2 10219 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-oi 9269 df-har 9316 df-card 9697 df-aleph 9698 df-cf 9699 df-acn 9700 df-ac 9872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |