| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minregex2 | Structured version Visualization version GIF version | ||
| Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| minregex2 | ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minregex 43533 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | |
| 2 | eldifi 4111 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ ran card) | |
| 3 | iscard4 43532 | . . . . . . . . . . 11 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ran card ∖ ω) → (card‘𝐴) = 𝐴) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘𝐴) = 𝐴) |
| 6 | alephcard 10089 | . . . . . . . . . 10 ⊢ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) |
| 8 | 5, 7 | sseq12d 3997 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
| 9 | numth3 10489 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ dom card) | |
| 10 | alephon 10088 | . . . . . . . . . 10 ⊢ (ℵ‘𝑦) ∈ On | |
| 11 | onenon 9968 | . . . . . . . . . 10 ⊢ ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card) | |
| 12 | 10, 11 | mp1i 13 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ dom card) |
| 13 | carddom2 9996 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 15 | 8, 14 | bitr3d 281 | . . . . . . 7 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 16 | 15 | 3anbi2d 1443 | . . . . . 6 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 17 | 16 | rabbidva 3427 | . . . . 5 ⊢ (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 18 | 17 | inteqd 4932 | . . . 4 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 19 | 18 | eqeq2d 2747 | . . 3 ⊢ (𝐴 ∈ (ran card ∖ ω) → (𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 20 | 19 | rexbidv 3165 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 21 | 1, 20 | mpbid 232 | 1 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3061 {crab 3420 ∖ cdif 3928 ⊆ wss 3931 ∅c0 4313 ∩ cint 4927 class class class wbr 5124 dom cdm 5659 ran crn 5660 Oncon0 6357 ‘cfv 6536 ωcom 7866 ≼ cdom 8962 cardccrd 9954 ℵcale 9955 cfccf 9956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-oi 9529 df-har 9576 df-card 9958 df-aleph 9959 df-cf 9960 df-acn 9961 df-ac 10135 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |