| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minregex2 | Structured version Visualization version GIF version | ||
| Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| minregex2 | ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minregex 43517 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | |
| 2 | eldifi 4082 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ ran card) | |
| 3 | iscard4 43516 | . . . . . . . . . . 11 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ran card ∖ ω) → (card‘𝐴) = 𝐴) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘𝐴) = 𝐴) |
| 6 | alephcard 9964 | . . . . . . . . . 10 ⊢ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) |
| 8 | 5, 7 | sseq12d 3969 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
| 9 | numth3 10364 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ dom card) | |
| 10 | alephon 9963 | . . . . . . . . . 10 ⊢ (ℵ‘𝑦) ∈ On | |
| 11 | onenon 9845 | . . . . . . . . . 10 ⊢ ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card) | |
| 12 | 10, 11 | mp1i 13 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ dom card) |
| 13 | carddom2 9873 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 15 | 8, 14 | bitr3d 281 | . . . . . . 7 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 16 | 15 | 3anbi2d 1443 | . . . . . 6 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 17 | 16 | rabbidva 3401 | . . . . 5 ⊢ (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 18 | 17 | inteqd 4901 | . . . 4 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 19 | 18 | eqeq2d 2740 | . . 3 ⊢ (𝐴 ∈ (ran card ∖ ω) → (𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 20 | 19 | rexbidv 3153 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 21 | 1, 20 | mpbid 232 | 1 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3394 ∖ cdif 3900 ⊆ wss 3903 ∅c0 4284 ∩ cint 4896 class class class wbr 5092 dom cdm 5619 ran crn 5620 Oncon0 6307 ‘cfv 6482 ωcom 7799 ≼ cdom 8870 cardccrd 9831 ℵcale 9832 cfccf 9833 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-ac2 10357 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-har 9449 df-card 9835 df-aleph 9836 df-cf 9837 df-acn 9838 df-ac 10010 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |