Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex2 Structured version   Visualization version   GIF version

Theorem minregex2 42286
Description: Given any cardinal number 𝐴, there exists an argument π‘₯, which yields the least regular uncountable value of β„΅ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.)
Assertion
Ref Expression
minregex2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
Distinct variable group:   π‘₯,𝐴,𝑦

Proof of Theorem minregex2
StepHypRef Expression
1 minregex 42285 . 2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
2 eldifi 4127 . . . . . . . . . . 11 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ 𝐴 ∈ ran card)
3 iscard4 42284 . . . . . . . . . . 11 ((cardβ€˜π΄) = 𝐴 ↔ 𝐴 ∈ ran card)
42, 3sylibr 233 . . . . . . . . . 10 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (cardβ€˜π΄) = 𝐴)
54adantr 482 . . . . . . . . 9 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (cardβ€˜π΄) = 𝐴)
6 alephcard 10065 . . . . . . . . . 10 (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)
76a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))
85, 7sseq12d 4016 . . . . . . . 8 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 βŠ† (β„΅β€˜π‘¦)))
9 numth3 10465 . . . . . . . . 9 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ 𝐴 ∈ dom card)
10 alephon 10064 . . . . . . . . . 10 (β„΅β€˜π‘¦) ∈ On
11 onenon 9944 . . . . . . . . . 10 ((β„΅β€˜π‘¦) ∈ On β†’ (β„΅β€˜π‘¦) ∈ dom card)
1210, 11mp1i 13 . . . . . . . . 9 (𝑦 ∈ On β†’ (β„΅β€˜π‘¦) ∈ dom card)
13 carddom2 9972 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ (β„΅β€˜π‘¦) ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
149, 12, 13syl2an 597 . . . . . . . 8 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
158, 14bitr3d 281 . . . . . . 7 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (𝐴 βŠ† (β„΅β€˜π‘¦) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
16153anbi2d 1442 . . . . . 6 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) ↔ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))))
1716rabbidva 3440 . . . . 5 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} = {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
1817inteqd 4956 . . . 4 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
1918eqeq2d 2744 . . 3 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} ↔ π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))}))
2019rexbidv 3179 . 2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} ↔ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))}))
211, 20mpbid 231 1 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433   βˆ– cdif 3946   βŠ† wss 3949  βˆ…c0 4323  βˆ© cint 4951   class class class wbr 5149  dom cdm 5677  ran crn 5678  Oncon0 6365  β€˜cfv 6544  Ο‰com 7855   β‰Ό cdom 8937  cardccrd 9930  β„΅cale 9931  cfccf 9932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-ac2 10458
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-oi 9505  df-har 9552  df-card 9934  df-aleph 9935  df-cf 9936  df-acn 9937  df-ac 10111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator