Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex2 Structured version   Visualization version   GIF version

Theorem minregex2 43518
Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.)
Assertion
Ref Expression
minregex2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem minregex2
StepHypRef Expression
1 minregex 43517 . 2 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
2 eldifi 4082 . . . . . . . . . . 11 (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ ran card)
3 iscard4 43516 . . . . . . . . . . 11 ((card‘𝐴) = 𝐴𝐴 ∈ ran card)
42, 3sylibr 234 . . . . . . . . . 10 (𝐴 ∈ (ran card ∖ ω) → (card‘𝐴) = 𝐴)
54adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘𝐴) = 𝐴)
6 alephcard 9964 . . . . . . . . . 10 (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)
76a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘(ℵ‘𝑦)) = (ℵ‘𝑦))
85, 7sseq12d 3969 . . . . . . . 8 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦)))
9 numth3 10364 . . . . . . . . 9 (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ dom card)
10 alephon 9963 . . . . . . . . . 10 (ℵ‘𝑦) ∈ On
11 onenon 9845 . . . . . . . . . 10 ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card)
1210, 11mp1i 13 . . . . . . . . 9 (𝑦 ∈ On → (ℵ‘𝑦) ∈ dom card)
13 carddom2 9873 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
149, 12, 13syl2an 596 . . . . . . . 8 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦)))
158, 14bitr3d 281 . . . . . . 7 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ≼ (ℵ‘𝑦)))
16153anbi2d 1443 . . . . . 6 ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))))
1716rabbidva 3401 . . . . 5 (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
1817inteqd 4901 . . . 4 (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
1918eqeq2d 2740 . . 3 (𝐴 ∈ (ran card ∖ ω) → (𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}))
2019rexbidv 3153 . 2 (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}))
211, 20mpbid 232 1 (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = {𝑦 ∈ On ∣ (∅ ∈ 𝑦𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  cdif 3900  wss 3903  c0 4284   cint 4896   class class class wbr 5092  dom cdm 5619  ran crn 5620  Oncon0 6307  cfv 6482  ωcom 7799  cdom 8870  cardccrd 9831  cale 9832  cfccf 9833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-oi 9402  df-har 9449  df-card 9835  df-aleph 9836  df-cf 9837  df-acn 9838  df-ac 10010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator