| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > minregex2 | Structured version Visualization version GIF version | ||
| Description: Given any cardinal number 𝐴, there exists an argument 𝑥, which yields the least regular uncountable value of ℵ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.) |
| Ref | Expression |
|---|---|
| minregex2 | ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minregex 43492 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) | |
| 2 | eldifi 4113 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ ran card) | |
| 3 | iscard4 43491 | . . . . . . . . . . 11 ⊢ ((card‘𝐴) = 𝐴 ↔ 𝐴 ∈ ran card) | |
| 4 | 2, 3 | sylibr 234 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ran card ∖ ω) → (card‘𝐴) = 𝐴) |
| 5 | 4 | adantr 480 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘𝐴) = 𝐴) |
| 6 | alephcard 10093 | . . . . . . . . . 10 ⊢ (card‘(ℵ‘𝑦)) = (ℵ‘𝑦) | |
| 7 | 6 | a1i 11 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (card‘(ℵ‘𝑦)) = (ℵ‘𝑦)) |
| 8 | 5, 7 | sseq12d 3999 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ⊆ (ℵ‘𝑦))) |
| 9 | numth3 10493 | . . . . . . . . 9 ⊢ (𝐴 ∈ (ran card ∖ ω) → 𝐴 ∈ dom card) | |
| 10 | alephon 10092 | . . . . . . . . . 10 ⊢ (ℵ‘𝑦) ∈ On | |
| 11 | onenon 9972 | . . . . . . . . . 10 ⊢ ((ℵ‘𝑦) ∈ On → (ℵ‘𝑦) ∈ dom card) | |
| 12 | 10, 11 | mp1i 13 | . . . . . . . . 9 ⊢ (𝑦 ∈ On → (ℵ‘𝑦) ∈ dom card) |
| 13 | carddom2 10000 | . . . . . . . . 9 ⊢ ((𝐴 ∈ dom card ∧ (ℵ‘𝑦) ∈ dom card) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) | |
| 14 | 9, 12, 13 | syl2an 596 | . . . . . . . 8 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((card‘𝐴) ⊆ (card‘(ℵ‘𝑦)) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 15 | 8, 14 | bitr3d 281 | . . . . . . 7 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → (𝐴 ⊆ (ℵ‘𝑦) ↔ 𝐴 ≼ (ℵ‘𝑦))) |
| 16 | 15 | 3anbi2d 1442 | . . . . . 6 ⊢ ((𝐴 ∈ (ran card ∖ ω) ∧ 𝑦 ∈ On) → ((∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)) ↔ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦)))) |
| 17 | 16 | rabbidva 3427 | . . . . 5 ⊢ (𝐴 ∈ (ran card ∖ ω) → {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 18 | 17 | inteqd 4933 | . . . 4 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| 19 | 18 | eqeq2d 2745 | . . 3 ⊢ (𝐴 ∈ (ran card ∖ ω) → (𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 20 | 19 | rexbidv 3166 | . 2 ⊢ (𝐴 ∈ (ran card ∖ ω) → (∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ⊆ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))} ↔ ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))})) |
| 21 | 1, 20 | mpbid 232 | 1 ⊢ (𝐴 ∈ (ran card ∖ ω) → ∃𝑥 ∈ On 𝑥 = ∩ {𝑦 ∈ On ∣ (∅ ∈ 𝑦 ∧ 𝐴 ≼ (ℵ‘𝑦) ∧ (cf‘(ℵ‘𝑦)) = (ℵ‘𝑦))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 {crab 3420 ∖ cdif 3930 ⊆ wss 3933 ∅c0 4315 ∩ cint 4928 class class class wbr 5125 dom cdm 5667 ran crn 5668 Oncon0 6365 ‘cfv 6542 ωcom 7870 ≼ cdom 8966 cardccrd 9958 ℵcale 9959 cfccf 9960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-ac2 10486 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-oi 9533 df-har 9580 df-card 9962 df-aleph 9963 df-cf 9964 df-acn 9965 df-ac 10139 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |