Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minregex2 Structured version   Visualization version   GIF version

Theorem minregex2 42862
Description: Given any cardinal number 𝐴, there exists an argument π‘₯, which yields the least regular uncountable value of β„΅ which dominates 𝐴. This proof uses AC. (Contributed by RP, 24-Nov-2023.)
Assertion
Ref Expression
minregex2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
Distinct variable group:   π‘₯,𝐴,𝑦

Proof of Theorem minregex2
StepHypRef Expression
1 minregex 42861 . 2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
2 eldifi 4121 . . . . . . . . . . 11 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ 𝐴 ∈ ran card)
3 iscard4 42860 . . . . . . . . . . 11 ((cardβ€˜π΄) = 𝐴 ↔ 𝐴 ∈ ran card)
42, 3sylibr 233 . . . . . . . . . 10 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (cardβ€˜π΄) = 𝐴)
54adantr 480 . . . . . . . . 9 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (cardβ€˜π΄) = 𝐴)
6 alephcard 10067 . . . . . . . . . 10 (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)
76a1i 11 . . . . . . . . 9 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (cardβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))
85, 7sseq12d 4010 . . . . . . . 8 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 βŠ† (β„΅β€˜π‘¦)))
9 numth3 10467 . . . . . . . . 9 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ 𝐴 ∈ dom card)
10 alephon 10066 . . . . . . . . . 10 (β„΅β€˜π‘¦) ∈ On
11 onenon 9946 . . . . . . . . . 10 ((β„΅β€˜π‘¦) ∈ On β†’ (β„΅β€˜π‘¦) ∈ dom card)
1210, 11mp1i 13 . . . . . . . . 9 (𝑦 ∈ On β†’ (β„΅β€˜π‘¦) ∈ dom card)
13 carddom2 9974 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ (β„΅β€˜π‘¦) ∈ dom card) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
149, 12, 13syl2an 595 . . . . . . . 8 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((cardβ€˜π΄) βŠ† (cardβ€˜(β„΅β€˜π‘¦)) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
158, 14bitr3d 281 . . . . . . 7 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ (𝐴 βŠ† (β„΅β€˜π‘¦) ↔ 𝐴 β‰Ό (β„΅β€˜π‘¦)))
16153anbi2d 1437 . . . . . 6 ((𝐴 ∈ (ran card βˆ– Ο‰) ∧ 𝑦 ∈ On) β†’ ((βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦)) ↔ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))))
1716rabbidva 3433 . . . . 5 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} = {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
1817inteqd 4948 . . . 4 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
1918eqeq2d 2737 . . 3 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} ↔ π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))}))
2019rexbidv 3172 . 2 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ (βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 βŠ† (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))} ↔ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))}))
211, 20mpbid 231 1 (𝐴 ∈ (ran card βˆ– Ο‰) β†’ βˆƒπ‘₯ ∈ On π‘₯ = ∩ {𝑦 ∈ On ∣ (βˆ… ∈ 𝑦 ∧ 𝐴 β‰Ό (β„΅β€˜π‘¦) ∧ (cfβ€˜(β„΅β€˜π‘¦)) = (β„΅β€˜π‘¦))})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064  {crab 3426   βˆ– cdif 3940   βŠ† wss 3943  βˆ…c0 4317  βˆ© cint 4943   class class class wbr 5141  dom cdm 5669  ran crn 5670  Oncon0 6358  β€˜cfv 6537  Ο‰com 7852   β‰Ό cdom 8939  cardccrd 9932  β„΅cale 9933  cfccf 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-ac2 10460
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-oi 9507  df-har 9554  df-card 9936  df-aleph 9937  df-cf 9938  df-acn 9939  df-ac 10113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator