Proof of Theorem 2llnm3N
Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . 3
⊢ (𝑋 = 𝑌 → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑌)) |
2 | 1 | neeq1d 3002 |
. 2
⊢ (𝑋 = 𝑌 → ((𝑋 ∧ 𝑌) ≠ 0 ↔ (𝑌 ∧ 𝑌) ≠ 0 )) |
3 | | simpl1 1189 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ HL) |
4 | | hlatl 37301 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
5 | 3, 4 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ AtLat) |
6 | | simpl2 1190 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃)) |
7 | | simpl3l 1226 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≤ 𝑊) |
8 | | simpl3r 1227 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑌 ≤ 𝑊) |
9 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) |
10 | | 2llnm3.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
11 | | 2llnm3.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
12 | | eqid 2738 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
13 | | 2llnm3.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
14 | | 2llnm3.p |
. . . . 5
⊢ 𝑃 = (LPlanes‘𝐾) |
15 | 10, 11, 12, 13, 14 | 2llnm2N 37509 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) |
16 | 3, 6, 7, 8, 9, 15 | syl113anc 1380 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) |
17 | | 2llnm3.z |
. . . 4
⊢ 0 =
(0.‘𝐾) |
18 | 17, 12 | atn0 37249 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
19 | 5, 16, 18 | syl2anc 583 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∧ 𝑌) ≠ 0 ) |
20 | | hllat 37304 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
21 | 20 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
22 | | simp22 1205 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝑁) |
23 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
24 | 23, 13 | llnbase 37450 |
. . . . 5
⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
25 | 22, 24 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ (Base‘𝐾)) |
26 | 23, 11 | latmidm 18107 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑌 ∧ 𝑌) = 𝑌) |
27 | 21, 25, 26 | syl2anc 583 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑌 ∧ 𝑌) = 𝑌) |
28 | | simp1 1134 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) |
29 | 17, 13 | llnn0 37457 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁) → 𝑌 ≠ 0 ) |
30 | 28, 22, 29 | syl2anc 583 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ≠ 0 ) |
31 | 27, 30 | eqnetrd 3010 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑌 ∧ 𝑌) ≠ 0 ) |
32 | 2, 19, 31 | pm2.61ne 3029 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≠ 0 ) |