Proof of Theorem 2llnm3N
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7438 |
. . 3
⊢ (𝑋 = 𝑌 → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑌)) |
| 2 | 1 | neeq1d 3000 |
. 2
⊢ (𝑋 = 𝑌 → ((𝑋 ∧ 𝑌) ≠ 0 ↔ (𝑌 ∧ 𝑌) ≠ 0 )) |
| 3 | | simpl1 1192 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ HL) |
| 4 | | hlatl 39361 |
. . . 4
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ AtLat) |
| 6 | | simpl2 1193 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃)) |
| 7 | | simpl3l 1229 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≤ 𝑊) |
| 8 | | simpl3r 1230 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑌 ≤ 𝑊) |
| 9 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) |
| 10 | | 2llnm3.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 11 | | 2llnm3.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 12 | | eqid 2737 |
. . . . 5
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
| 13 | | 2llnm3.n |
. . . . 5
⊢ 𝑁 = (LLines‘𝐾) |
| 14 | | 2llnm3.p |
. . . . 5
⊢ 𝑃 = (LPlanes‘𝐾) |
| 15 | 10, 11, 12, 13, 14 | 2llnm2N 39570 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) |
| 16 | 3, 6, 7, 8, 9, 15 | syl113anc 1384 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) |
| 17 | | 2llnm3.z |
. . . 4
⊢ 0 =
(0.‘𝐾) |
| 18 | 17, 12 | atn0 39309 |
. . 3
⊢ ((𝐾 ∈ AtLat ∧ (𝑋 ∧ 𝑌) ∈ (Atoms‘𝐾)) → (𝑋 ∧ 𝑌) ≠ 0 ) |
| 19 | 5, 16, 18 | syl2anc 584 |
. 2
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) ∧ 𝑋 ≠ 𝑌) → (𝑋 ∧ 𝑌) ≠ 0 ) |
| 20 | | hllat 39364 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 21 | 20 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ Lat) |
| 22 | | simp22 1208 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ 𝑁) |
| 23 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 24 | 23, 13 | llnbase 39511 |
. . . . 5
⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 25 | 22, 24 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ∈ (Base‘𝐾)) |
| 26 | 23, 11 | latmidm 18519 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑌 ∧ 𝑌) = 𝑌) |
| 27 | 21, 25, 26 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑌 ∧ 𝑌) = 𝑌) |
| 28 | | simp1 1137 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝐾 ∈ HL) |
| 29 | 17, 13 | llnn0 39518 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁) → 𝑌 ≠ 0 ) |
| 30 | 28, 22, 29 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → 𝑌 ≠ 0 ) |
| 31 | 27, 30 | eqnetrd 3008 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑌 ∧ 𝑌) ≠ 0 ) |
| 32 | 2, 19, 31 | pm2.61ne 3027 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑊 ∈ 𝑃) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≠ 0 ) |