Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2llnm3N Structured version   Visualization version   GIF version

Theorem 2llnm3N 36865
Description: Two lattice lines in a lattice plane always meet. (Contributed by NM, 5-Jul-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2llnm3.l = (le‘𝐾)
2llnm3.m = (meet‘𝐾)
2llnm3.z 0 = (0.‘𝐾)
2llnm3.n 𝑁 = (LLines‘𝐾)
2llnm3.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2llnm3N ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → (𝑋 𝑌) ≠ 0 )

Proof of Theorem 2llnm3N
StepHypRef Expression
1 oveq1 7142 . . 3 (𝑋 = 𝑌 → (𝑋 𝑌) = (𝑌 𝑌))
21neeq1d 3046 . 2 (𝑋 = 𝑌 → ((𝑋 𝑌) ≠ 0 ↔ (𝑌 𝑌) ≠ 0 ))
3 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → 𝐾 ∈ HL)
4 hlatl 36656 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
53, 4syl 17 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → 𝐾 ∈ AtLat)
6 simpl2 1189 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → (𝑋𝑁𝑌𝑁𝑊𝑃))
7 simpl3l 1225 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋 𝑊)
8 simpl3r 1226 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑌 𝑊)
9 simpr 488 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → 𝑋𝑌)
10 2llnm3.l . . . . 5 = (le‘𝐾)
11 2llnm3.m . . . . 5 = (meet‘𝐾)
12 eqid 2798 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
13 2llnm3.n . . . . 5 𝑁 = (LLines‘𝐾)
14 2llnm3.p . . . . 5 𝑃 = (LPlanes‘𝐾)
1510, 11, 12, 13, 142llnm2N 36864 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊𝑋𝑌)) → (𝑋 𝑌) ∈ (Atoms‘𝐾))
163, 6, 7, 8, 9, 15syl113anc 1379 . . 3 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → (𝑋 𝑌) ∈ (Atoms‘𝐾))
17 2llnm3.z . . . 4 0 = (0.‘𝐾)
1817, 12atn0 36604 . . 3 ((𝐾 ∈ AtLat ∧ (𝑋 𝑌) ∈ (Atoms‘𝐾)) → (𝑋 𝑌) ≠ 0 )
195, 16, 18syl2anc 587 . 2 (((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) ∧ 𝑋𝑌) → (𝑋 𝑌) ≠ 0 )
20 hllat 36659 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21203ad2ant1 1130 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → 𝐾 ∈ Lat)
22 simp22 1204 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → 𝑌𝑁)
23 eqid 2798 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
2423, 13llnbase 36805 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
2522, 24syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → 𝑌 ∈ (Base‘𝐾))
2623, 11latmidm 17688 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑌 𝑌) = 𝑌)
2721, 25, 26syl2anc 587 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → (𝑌 𝑌) = 𝑌)
28 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → 𝐾 ∈ HL)
2917, 13llnn0 36812 . . . 4 ((𝐾 ∈ HL ∧ 𝑌𝑁) → 𝑌0 )
3028, 22, 29syl2anc 587 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → 𝑌0 )
3127, 30eqnetrd 3054 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → (𝑌 𝑌) ≠ 0 )
322, 19, 31pm2.61ne 3072 1 ((𝐾 ∈ HL ∧ (𝑋𝑁𝑌𝑁𝑊𝑃) ∧ (𝑋 𝑊𝑌 𝑊)) → (𝑋 𝑌) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  meetcmee 17547  0.cp0 17639  Latclat 17647  Atomscatm 36559  AtLatcal 36560  HLchlt 36646  LLinesclln 36787  LPlanesclpl 36788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator