Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Structured version   Visualization version   GIF version

Theorem dia2dimlem1 41173
Description: Lemma for dia2dim 41186. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l = (le‘𝐾)
dia2dimlem1.j = (join‘𝐾)
dia2dimlem1.m = (meet‘𝐾)
dia2dimlem1.a 𝐴 = (Atoms‘𝐾)
dia2dimlem1.h 𝐻 = (LHyp‘𝐾)
dia2dimlem1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem1.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem1.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem1.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem1.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem1.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem1.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem1.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem1.uv (𝜑𝑈𝑉)
dia2dimlem1.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
Assertion
Ref Expression
dia2dimlem1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
2 dia2dimlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
32simpld 494 . . . 4 (𝜑𝐾 ∈ HL)
4 dia2dimlem1.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 494 . . . 4 (𝜑𝑃𝐴)
6 dia2dimlem1.f . . . . 5 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
7 dia2dimlem1.l . . . . . 6 = (le‘𝐾)
8 dia2dimlem1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dia2dimlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 dia2dimlem1.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 dia2dimlem1.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 40278 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
132, 4, 6, 12syl3anc 1373 . . . 4 (𝜑 → (𝑅𝐹) ∈ 𝐴)
14 dia2dimlem1.u . . . . 5 (𝜑 → (𝑈𝐴𝑈 𝑊))
1514simpld 494 . . . 4 (𝜑𝑈𝐴)
166simpld 494 . . . . . 6 (𝜑𝐹𝑇)
177, 8, 9, 10ltrnel 40248 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
182, 16, 4, 17syl3anc 1373 . . . . 5 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1918simpld 494 . . . 4 (𝜑 → (𝐹𝑃) ∈ 𝐴)
20 dia2dimlem1.v . . . . 5 (𝜑 → (𝑉𝐴𝑉 𝑊))
2120simpld 494 . . . 4 (𝜑𝑉𝐴)
224simprd 495 . . . . . 6 (𝜑 → ¬ 𝑃 𝑊)
237, 9, 10, 11trlle 40293 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
242, 16, 23syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅𝐹) 𝑊)
2514simprd 495 . . . . . . . 8 (𝜑𝑈 𝑊)
263hllatd 39473 . . . . . . . . 9 (𝜑𝐾 ∈ Lat)
27 eqid 2731 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2827, 8atbase 39398 . . . . . . . . . 10 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
2913, 28syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ (Base‘𝐾))
3027, 8atbase 39398 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3115, 30syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ (Base‘𝐾))
322simprd 495 . . . . . . . . . 10 (𝜑𝑊𝐻)
3327, 9lhpbase 40107 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
35 dia2dimlem1.j . . . . . . . . . 10 = (join‘𝐾)
3627, 7, 35latjle12 18356 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3726, 29, 31, 34, 36syl13anc 1374 . . . . . . . 8 (𝜑 → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3824, 25, 37mpbi2and 712 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑈) 𝑊)
3927, 8atbase 39398 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
405, 39syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
4127, 35, 8hlatjcl 39476 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
423, 13, 15, 41syl3anc 1373 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
4327, 7lattr 18350 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4426, 40, 42, 34, 43syl13anc 1374 . . . . . . 7 (𝜑 → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4538, 44mpan2d 694 . . . . . 6 (𝜑 → (𝑃 ((𝑅𝐹) 𝑈) → 𝑃 𝑊))
4622, 45mtod 198 . . . . 5 (𝜑 → ¬ 𝑃 ((𝑅𝐹) 𝑈))
4720simprd 495 . . . . . . 7 (𝜑𝑉 𝑊)
4818simprd 495 . . . . . . 7 (𝜑 → ¬ (𝐹𝑃) 𝑊)
49 nbrne2 5109 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → 𝑉 ≠ (𝐹𝑃))
5047, 48, 49syl2anc 584 . . . . . 6 (𝜑𝑉 ≠ (𝐹𝑃))
5150necomd 2983 . . . . 5 (𝜑 → (𝐹𝑃) ≠ 𝑉)
5246, 51jca 511 . . . 4 (𝜑 → (¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉))
5326adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝐾 ∈ Lat)
5440adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
5527, 35, 8hlatjcl 39476 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑈𝐴) → (𝑉 𝑈) ∈ (Base‘𝐾))
563, 21, 15, 55syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) ∈ (Base‘𝐾))
5756adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) ∈ (Base‘𝐾))
5834adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑊 ∈ (Base‘𝐾))
597, 35, 8hlatlej2 39485 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
603, 19, 21, 59syl3anc 1373 . . . . . . . . . . 11 (𝜑𝑉 ((𝐹𝑃) 𝑉))
6160adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 ((𝐹𝑃) 𝑉))
62 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑃 𝑈) = ((𝐹𝑃) 𝑉))
6361, 62breqtrrd 5117 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 (𝑃 𝑈))
64 dia2dimlem1.uv . . . . . . . . . . . 12 (𝜑𝑈𝑉)
6564necomd 2983 . . . . . . . . . . 11 (𝜑𝑉𝑈)
667, 35, 8hlatexch2 39505 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴𝑃𝐴𝑈𝐴) ∧ 𝑉𝑈) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
673, 21, 5, 15, 65, 66syl131anc 1385 . . . . . . . . . 10 (𝜑 → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6867adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6963, 68mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 (𝑉 𝑈))
7027, 8atbase 39398 . . . . . . . . . . . 12 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
7121, 70syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ (Base‘𝐾))
7227, 7, 35latjle12 18356 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7326, 71, 31, 34, 72syl13anc 1374 . . . . . . . . . 10 (𝜑 → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7447, 25, 73mpbi2and 712 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) 𝑊)
7574adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) 𝑊)
7627, 7, 53, 54, 57, 58, 69, 75lattrd 18352 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 𝑊)
7776ex 412 . . . . . 6 (𝜑 → ((𝑃 𝑈) = ((𝐹𝑃) 𝑉) → 𝑃 𝑊))
7877necon3bd 2942 . . . . 5 (𝜑 → (¬ 𝑃 𝑊 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉)))
7922, 78mpd 15 . . . 4 (𝜑 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉))
807, 35, 8hlatlej2 39485 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
813, 5, 19, 80syl3anc 1373 . . . . . 6 (𝜑 → (𝐹𝑃) (𝑃 (𝐹𝑃)))
82 dia2dimlem1.m . . . . . . . . . 10 = (meet‘𝐾)
837, 35, 82, 8, 9, 10, 11trlval2 40272 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
842, 16, 4, 83syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8584oveq2d 7362 . . . . . . 7 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)))
8627, 35, 8hlatjcl 39476 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
873, 5, 19, 86syl3anc 1373 . . . . . . . . 9 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
887, 35, 8hlatlej1 39484 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
893, 5, 19, 88syl3anc 1373 . . . . . . . . 9 (𝜑𝑃 (𝑃 (𝐹𝑃)))
9027, 7, 35, 82, 8atmod3i1 39973 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
913, 5, 87, 34, 89, 90syl131anc 1385 . . . . . . . 8 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
92 eqid 2731 . . . . . . . . . . . 12 (1.‘𝐾) = (1.‘𝐾)
937, 35, 92, 8, 9lhpjat2 40130 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
942, 4, 93syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑃 𝑊) = (1.‘𝐾))
9594oveq2d 7362 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = ((𝑃 (𝐹𝑃)) (1.‘𝐾)))
96 hlol 39470 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
973, 96syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ OL)
9827, 82, 92olm11 39336 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
9997, 87, 98syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
10095, 99eqtrd 2766 . . . . . . . 8 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = (𝑃 (𝐹𝑃)))
10191, 100eqtrd 2766 . . . . . . 7 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = (𝑃 (𝐹𝑃)))
10285, 101eqtrd 2766 . . . . . 6 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
10381, 102breqtrrd 5117 . . . . 5 (𝜑 → (𝐹𝑃) (𝑃 (𝑅𝐹)))
104 dia2dimlem1.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
10535, 8hlatjcom 39477 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
1063, 15, 21, 105syl3anc 1373 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
107104, 106breqtrd 5115 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
108 dia2dimlem1.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
1097, 35, 8hlatexch2 39505 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
1103, 13, 21, 15, 108, 109syl131anc 1385 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
111107, 110mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
112103, 111jca 511 . . . 4 (𝜑 → ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))
1137, 35, 82, 8ps-2c 39637 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) ∧ ((¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉) ∧ (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉) ∧ ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1143, 5, 13, 15, 19, 21, 52, 79, 112, 113syl333anc 1404 . . 3 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1151, 114eqeltrid 2835 . 2 (𝜑𝑄𝐴)
11627, 35, 8hlatjcl 39476 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
1173, 5, 15, 116syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
11827, 35, 8hlatjcl 39476 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
1193, 19, 21, 118syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
12027, 7, 82latmle1 18370 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
12126, 117, 119, 120syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
1221, 121eqbrtrid 5124 . . . . . . . . . 10 (𝜑𝑄 (𝑃 𝑈))
12327, 8atbase 39398 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
124115, 123syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘𝐾))
12527, 7, 82latlem12 18372 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
12626, 124, 117, 34, 125syl13anc 1374 . . . . . . . . . . 11 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
127126biimpd 229 . . . . . . . . . 10 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊)))
128122, 127mpand 695 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 ((𝑃 𝑈) 𝑊)))
129128imp 406 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊))
130 eqid 2731 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
1317, 82, 130, 8, 9lhpmat 40139 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
1322, 4, 131syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑊) = (0.‘𝐾))
133132oveq1d 7361 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
13427, 7, 35, 82, 8atmod4i1 39975 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
1353, 15, 40, 34, 25, 134syl131anc 1385 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
13627, 35, 130olj02 39335 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
13797, 31, 136syl2anc 584 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑈) = 𝑈)
138133, 135, 1373eqtr3d 2774 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) 𝑊) = 𝑈)
139138adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → ((𝑃 𝑈) 𝑊) = 𝑈)
140129, 139breqtrd 5115 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑈)
141 hlatl 39469 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1423, 141syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ AtLat)
143142adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝐾 ∈ AtLat)
144115adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄𝐴)
14515adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑈𝐴)
1467, 8atcmp 39420 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈𝑄 = 𝑈))
147143, 144, 145, 146syl3anc 1373 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑈𝑄 = 𝑈))
148140, 147mpbid 232 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑈)
14927, 7, 82latmle2 18371 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
15026, 117, 119, 149syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
1511, 150eqbrtrid 5124 . . . . . . . . . 10 (𝜑𝑄 ((𝐹𝑃) 𝑉))
15227, 7, 82latlem12 18372 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
15326, 124, 119, 34, 152syl13anc 1374 . . . . . . . . . . 11 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
154153biimpd 229 . . . . . . . . . 10 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
155151, 154mpand 695 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
156155imp 406 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊))
1577, 82, 130, 8, 9lhpmat 40139 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
1582, 18, 157syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
159158oveq1d 7361 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = ((0.‘𝐾) 𝑉))
16027, 8atbase 39398 . . . . . . . . . . . 12 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ (Base‘𝐾))
16119, 160syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ (Base‘𝐾))
16227, 7, 35, 82, 8atmod4i1 39975 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
1633, 21, 161, 34, 47, 162syl131anc 1385 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
16427, 35, 130olj02 39335 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑉) = 𝑉)
16597, 71, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑉) = 𝑉)
166159, 163, 1653eqtr3d 2774 . . . . . . . . 9 (𝜑 → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
167166adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
168156, 167breqtrd 5115 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑉)
16921adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑉𝐴)
1707, 8atcmp 39420 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑉𝐴) → (𝑄 𝑉𝑄 = 𝑉))
171143, 144, 169, 170syl3anc 1373 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑉𝑄 = 𝑉))
172168, 171mpbid 232 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑉)
173148, 172eqtr3d 2768 . . . . 5 ((𝜑𝑄 𝑊) → 𝑈 = 𝑉)
174173ex 412 . . . 4 (𝜑 → (𝑄 𝑊𝑈 = 𝑉))
175174necon3ad 2941 . . 3 (𝜑 → (𝑈𝑉 → ¬ 𝑄 𝑊))
17664, 175mpd 15 . 2 (𝜑 → ¬ 𝑄 𝑊)
177115, 176jca 511 1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  0.cp0 18327  1.cp1 18328  Latclat 18337  OLcol 39283  Atomscatm 39372  AtLatcal 39373  HLchlt 39459  LHypclh 40093  LTrncltrn 40210  trLctrl 40267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  dia2dimlem3  41175  dia2dimlem6  41178
  Copyright terms: Public domain W3C validator