Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Structured version   Visualization version   GIF version

Theorem dia2dimlem1 41021
Description: Lemma for dia2dim 41034. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l = (le‘𝐾)
dia2dimlem1.j = (join‘𝐾)
dia2dimlem1.m = (meet‘𝐾)
dia2dimlem1.a 𝐴 = (Atoms‘𝐾)
dia2dimlem1.h 𝐻 = (LHyp‘𝐾)
dia2dimlem1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem1.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem1.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem1.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem1.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem1.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem1.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem1.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem1.uv (𝜑𝑈𝑉)
dia2dimlem1.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
Assertion
Ref Expression
dia2dimlem1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
2 dia2dimlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
32simpld 494 . . . 4 (𝜑𝐾 ∈ HL)
4 dia2dimlem1.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 494 . . . 4 (𝜑𝑃𝐴)
6 dia2dimlem1.f . . . . 5 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
7 dia2dimlem1.l . . . . . 6 = (le‘𝐾)
8 dia2dimlem1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dia2dimlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 dia2dimlem1.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 dia2dimlem1.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 40126 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
132, 4, 6, 12syl3anc 1371 . . . 4 (𝜑 → (𝑅𝐹) ∈ 𝐴)
14 dia2dimlem1.u . . . . 5 (𝜑 → (𝑈𝐴𝑈 𝑊))
1514simpld 494 . . . 4 (𝜑𝑈𝐴)
166simpld 494 . . . . . 6 (𝜑𝐹𝑇)
177, 8, 9, 10ltrnel 40096 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
182, 16, 4, 17syl3anc 1371 . . . . 5 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1918simpld 494 . . . 4 (𝜑 → (𝐹𝑃) ∈ 𝐴)
20 dia2dimlem1.v . . . . 5 (𝜑 → (𝑉𝐴𝑉 𝑊))
2120simpld 494 . . . 4 (𝜑𝑉𝐴)
224simprd 495 . . . . . 6 (𝜑 → ¬ 𝑃 𝑊)
237, 9, 10, 11trlle 40141 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
242, 16, 23syl2anc 583 . . . . . . . 8 (𝜑 → (𝑅𝐹) 𝑊)
2514simprd 495 . . . . . . . 8 (𝜑𝑈 𝑊)
263hllatd 39320 . . . . . . . . 9 (𝜑𝐾 ∈ Lat)
27 eqid 2740 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2827, 8atbase 39245 . . . . . . . . . 10 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
2913, 28syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ (Base‘𝐾))
3027, 8atbase 39245 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3115, 30syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ (Base‘𝐾))
322simprd 495 . . . . . . . . . 10 (𝜑𝑊𝐻)
3327, 9lhpbase 39955 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
35 dia2dimlem1.j . . . . . . . . . 10 = (join‘𝐾)
3627, 7, 35latjle12 18520 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3726, 29, 31, 34, 36syl13anc 1372 . . . . . . . 8 (𝜑 → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3824, 25, 37mpbi2and 711 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑈) 𝑊)
3927, 8atbase 39245 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
405, 39syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
4127, 35, 8hlatjcl 39323 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
423, 13, 15, 41syl3anc 1371 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
4327, 7lattr 18514 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4426, 40, 42, 34, 43syl13anc 1372 . . . . . . 7 (𝜑 → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4538, 44mpan2d 693 . . . . . 6 (𝜑 → (𝑃 ((𝑅𝐹) 𝑈) → 𝑃 𝑊))
4622, 45mtod 198 . . . . 5 (𝜑 → ¬ 𝑃 ((𝑅𝐹) 𝑈))
4720simprd 495 . . . . . . 7 (𝜑𝑉 𝑊)
4818simprd 495 . . . . . . 7 (𝜑 → ¬ (𝐹𝑃) 𝑊)
49 nbrne2 5186 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → 𝑉 ≠ (𝐹𝑃))
5047, 48, 49syl2anc 583 . . . . . 6 (𝜑𝑉 ≠ (𝐹𝑃))
5150necomd 3002 . . . . 5 (𝜑 → (𝐹𝑃) ≠ 𝑉)
5246, 51jca 511 . . . 4 (𝜑 → (¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉))
5326adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝐾 ∈ Lat)
5440adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
5527, 35, 8hlatjcl 39323 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑈𝐴) → (𝑉 𝑈) ∈ (Base‘𝐾))
563, 21, 15, 55syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) ∈ (Base‘𝐾))
5756adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) ∈ (Base‘𝐾))
5834adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑊 ∈ (Base‘𝐾))
597, 35, 8hlatlej2 39332 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
603, 19, 21, 59syl3anc 1371 . . . . . . . . . . 11 (𝜑𝑉 ((𝐹𝑃) 𝑉))
6160adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 ((𝐹𝑃) 𝑉))
62 simpr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑃 𝑈) = ((𝐹𝑃) 𝑉))
6361, 62breqtrrd 5194 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 (𝑃 𝑈))
64 dia2dimlem1.uv . . . . . . . . . . . 12 (𝜑𝑈𝑉)
6564necomd 3002 . . . . . . . . . . 11 (𝜑𝑉𝑈)
667, 35, 8hlatexch2 39353 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴𝑃𝐴𝑈𝐴) ∧ 𝑉𝑈) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
673, 21, 5, 15, 65, 66syl131anc 1383 . . . . . . . . . 10 (𝜑 → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6867adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6963, 68mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 (𝑉 𝑈))
7027, 8atbase 39245 . . . . . . . . . . . 12 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
7121, 70syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ (Base‘𝐾))
7227, 7, 35latjle12 18520 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7326, 71, 31, 34, 72syl13anc 1372 . . . . . . . . . 10 (𝜑 → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7447, 25, 73mpbi2and 711 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) 𝑊)
7574adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) 𝑊)
7627, 7, 53, 54, 57, 58, 69, 75lattrd 18516 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 𝑊)
7776ex 412 . . . . . 6 (𝜑 → ((𝑃 𝑈) = ((𝐹𝑃) 𝑉) → 𝑃 𝑊))
7877necon3bd 2960 . . . . 5 (𝜑 → (¬ 𝑃 𝑊 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉)))
7922, 78mpd 15 . . . 4 (𝜑 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉))
807, 35, 8hlatlej2 39332 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
813, 5, 19, 80syl3anc 1371 . . . . . 6 (𝜑 → (𝐹𝑃) (𝑃 (𝐹𝑃)))
82 dia2dimlem1.m . . . . . . . . . 10 = (meet‘𝐾)
837, 35, 82, 8, 9, 10, 11trlval2 40120 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
842, 16, 4, 83syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8584oveq2d 7464 . . . . . . 7 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)))
8627, 35, 8hlatjcl 39323 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
873, 5, 19, 86syl3anc 1371 . . . . . . . . 9 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
887, 35, 8hlatlej1 39331 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
893, 5, 19, 88syl3anc 1371 . . . . . . . . 9 (𝜑𝑃 (𝑃 (𝐹𝑃)))
9027, 7, 35, 82, 8atmod3i1 39821 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
913, 5, 87, 34, 89, 90syl131anc 1383 . . . . . . . 8 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
92 eqid 2740 . . . . . . . . . . . 12 (1.‘𝐾) = (1.‘𝐾)
937, 35, 92, 8, 9lhpjat2 39978 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
942, 4, 93syl2anc 583 . . . . . . . . . 10 (𝜑 → (𝑃 𝑊) = (1.‘𝐾))
9594oveq2d 7464 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = ((𝑃 (𝐹𝑃)) (1.‘𝐾)))
96 hlol 39317 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
973, 96syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ OL)
9827, 82, 92olm11 39183 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
9997, 87, 98syl2anc 583 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
10095, 99eqtrd 2780 . . . . . . . 8 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = (𝑃 (𝐹𝑃)))
10191, 100eqtrd 2780 . . . . . . 7 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = (𝑃 (𝐹𝑃)))
10285, 101eqtrd 2780 . . . . . 6 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
10381, 102breqtrrd 5194 . . . . 5 (𝜑 → (𝐹𝑃) (𝑃 (𝑅𝐹)))
104 dia2dimlem1.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
10535, 8hlatjcom 39324 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
1063, 15, 21, 105syl3anc 1371 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
107104, 106breqtrd 5192 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
108 dia2dimlem1.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
1097, 35, 8hlatexch2 39353 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
1103, 13, 21, 15, 108, 109syl131anc 1383 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
111107, 110mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
112103, 111jca 511 . . . 4 (𝜑 → ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))
1137, 35, 82, 8ps-2c 39485 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) ∧ ((¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉) ∧ (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉) ∧ ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1143, 5, 13, 15, 19, 21, 52, 79, 112, 113syl333anc 1402 . . 3 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1151, 114eqeltrid 2848 . 2 (𝜑𝑄𝐴)
11627, 35, 8hlatjcl 39323 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
1173, 5, 15, 116syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
11827, 35, 8hlatjcl 39323 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
1193, 19, 21, 118syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
12027, 7, 82latmle1 18534 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
12126, 117, 119, 120syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
1221, 121eqbrtrid 5201 . . . . . . . . . 10 (𝜑𝑄 (𝑃 𝑈))
12327, 8atbase 39245 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
124115, 123syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘𝐾))
12527, 7, 82latlem12 18536 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
12626, 124, 117, 34, 125syl13anc 1372 . . . . . . . . . . 11 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
127126biimpd 229 . . . . . . . . . 10 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊)))
128122, 127mpand 694 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 ((𝑃 𝑈) 𝑊)))
129128imp 406 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊))
130 eqid 2740 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
1317, 82, 130, 8, 9lhpmat 39987 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
1322, 4, 131syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑊) = (0.‘𝐾))
133132oveq1d 7463 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
13427, 7, 35, 82, 8atmod4i1 39823 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
1353, 15, 40, 34, 25, 134syl131anc 1383 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
13627, 35, 130olj02 39182 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
13797, 31, 136syl2anc 583 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑈) = 𝑈)
138133, 135, 1373eqtr3d 2788 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) 𝑊) = 𝑈)
139138adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → ((𝑃 𝑈) 𝑊) = 𝑈)
140129, 139breqtrd 5192 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑈)
141 hlatl 39316 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1423, 141syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ AtLat)
143142adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝐾 ∈ AtLat)
144115adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄𝐴)
14515adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑈𝐴)
1467, 8atcmp 39267 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈𝑄 = 𝑈))
147143, 144, 145, 146syl3anc 1371 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑈𝑄 = 𝑈))
148140, 147mpbid 232 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑈)
14927, 7, 82latmle2 18535 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
15026, 117, 119, 149syl3anc 1371 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
1511, 150eqbrtrid 5201 . . . . . . . . . 10 (𝜑𝑄 ((𝐹𝑃) 𝑉))
15227, 7, 82latlem12 18536 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
15326, 124, 119, 34, 152syl13anc 1372 . . . . . . . . . . 11 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
154153biimpd 229 . . . . . . . . . 10 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
155151, 154mpand 694 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
156155imp 406 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊))
1577, 82, 130, 8, 9lhpmat 39987 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
1582, 18, 157syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
159158oveq1d 7463 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = ((0.‘𝐾) 𝑉))
16027, 8atbase 39245 . . . . . . . . . . . 12 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ (Base‘𝐾))
16119, 160syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ (Base‘𝐾))
16227, 7, 35, 82, 8atmod4i1 39823 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
1633, 21, 161, 34, 47, 162syl131anc 1383 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
16427, 35, 130olj02 39182 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑉) = 𝑉)
16597, 71, 164syl2anc 583 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑉) = 𝑉)
166159, 163, 1653eqtr3d 2788 . . . . . . . . 9 (𝜑 → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
167166adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
168156, 167breqtrd 5192 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑉)
16921adantr 480 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑉𝐴)
1707, 8atcmp 39267 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑉𝐴) → (𝑄 𝑉𝑄 = 𝑉))
171143, 144, 169, 170syl3anc 1371 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑉𝑄 = 𝑉))
172168, 171mpbid 232 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑉)
173148, 172eqtr3d 2782 . . . . 5 ((𝜑𝑄 𝑊) → 𝑈 = 𝑉)
174173ex 412 . . . 4 (𝜑 → (𝑄 𝑊𝑈 = 𝑉))
175174necon3ad 2959 . . 3 (𝜑 → (𝑈𝑉 → ¬ 𝑄 𝑊))
17664, 175mpd 15 . 2 (𝜑 → ¬ 𝑄 𝑊)
177115, 176jca 511 1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  meetcmee 18382  0.cp0 18493  1.cp1 18494  Latclat 18501  OLcol 39130  Atomscatm 39219  AtLatcal 39220  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116
This theorem is referenced by:  dia2dimlem3  41023  dia2dimlem6  41026
  Copyright terms: Public domain W3C validator