Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia2dimlem1 Structured version   Visualization version   GIF version

Theorem dia2dimlem1 37731
Description: Lemma for dia2dim 37744. Show properties of the auxiliary atom 𝑄. Part of proof of Lemma M in [Crawley] p. 121 line 3. (Contributed by NM, 8-Sep-2014.)
Hypotheses
Ref Expression
dia2dimlem1.l = (le‘𝐾)
dia2dimlem1.j = (join‘𝐾)
dia2dimlem1.m = (meet‘𝐾)
dia2dimlem1.a 𝐴 = (Atoms‘𝐾)
dia2dimlem1.h 𝐻 = (LHyp‘𝐾)
dia2dimlem1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dia2dimlem1.r 𝑅 = ((trL‘𝐾)‘𝑊)
dia2dimlem1.q 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
dia2dimlem1.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
dia2dimlem1.u (𝜑 → (𝑈𝐴𝑈 𝑊))
dia2dimlem1.v (𝜑 → (𝑉𝐴𝑉 𝑊))
dia2dimlem1.p (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
dia2dimlem1.f (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
dia2dimlem1.rf (𝜑 → (𝑅𝐹) (𝑈 𝑉))
dia2dimlem1.uv (𝜑𝑈𝑉)
dia2dimlem1.ru (𝜑 → (𝑅𝐹) ≠ 𝑈)
Assertion
Ref Expression
dia2dimlem1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))

Proof of Theorem dia2dimlem1
StepHypRef Expression
1 dia2dimlem1.q . . 3 𝑄 = ((𝑃 𝑈) ((𝐹𝑃) 𝑉))
2 dia2dimlem1.k . . . . 5 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
32simpld 495 . . . 4 (𝜑𝐾 ∈ HL)
4 dia2dimlem1.p . . . . 5 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
54simpld 495 . . . 4 (𝜑𝑃𝐴)
6 dia2dimlem1.f . . . . 5 (𝜑 → (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃))
7 dia2dimlem1.l . . . . . 6 = (le‘𝐾)
8 dia2dimlem1.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 dia2dimlem1.h . . . . . 6 𝐻 = (LHyp‘𝐾)
10 dia2dimlem1.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 dia2dimlem1.r . . . . . 6 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 36836 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
132, 4, 6, 12syl3anc 1364 . . . 4 (𝜑 → (𝑅𝐹) ∈ 𝐴)
14 dia2dimlem1.u . . . . 5 (𝜑 → (𝑈𝐴𝑈 𝑊))
1514simpld 495 . . . 4 (𝜑𝑈𝐴)
166simpld 495 . . . . . 6 (𝜑𝐹𝑇)
177, 8, 9, 10ltrnel 36806 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
182, 16, 4, 17syl3anc 1364 . . . . 5 (𝜑 → ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊))
1918simpld 495 . . . 4 (𝜑 → (𝐹𝑃) ∈ 𝐴)
20 dia2dimlem1.v . . . . 5 (𝜑 → (𝑉𝐴𝑉 𝑊))
2120simpld 495 . . . 4 (𝜑𝑉𝐴)
224simprd 496 . . . . . 6 (𝜑 → ¬ 𝑃 𝑊)
237, 9, 10, 11trlle 36851 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
242, 16, 23syl2anc 584 . . . . . . . 8 (𝜑 → (𝑅𝐹) 𝑊)
2514simprd 496 . . . . . . . 8 (𝜑𝑈 𝑊)
263hllatd 36031 . . . . . . . . 9 (𝜑𝐾 ∈ Lat)
27 eqid 2795 . . . . . . . . . . 11 (Base‘𝐾) = (Base‘𝐾)
2827, 8atbase 35956 . . . . . . . . . 10 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
2913, 28syl 17 . . . . . . . . 9 (𝜑 → (𝑅𝐹) ∈ (Base‘𝐾))
3027, 8atbase 35956 . . . . . . . . . 10 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
3115, 30syl 17 . . . . . . . . 9 (𝜑𝑈 ∈ (Base‘𝐾))
322simprd 496 . . . . . . . . . 10 (𝜑𝑊𝐻)
3327, 9lhpbase 36665 . . . . . . . . . 10 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3432, 33syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ (Base‘𝐾))
35 dia2dimlem1.j . . . . . . . . . 10 = (join‘𝐾)
3627, 7, 35latjle12 17501 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3726, 29, 31, 34, 36syl13anc 1365 . . . . . . . 8 (𝜑 → (((𝑅𝐹) 𝑊𝑈 𝑊) ↔ ((𝑅𝐹) 𝑈) 𝑊))
3824, 25, 37mpbi2and 708 . . . . . . 7 (𝜑 → ((𝑅𝐹) 𝑈) 𝑊)
3927, 8atbase 35956 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
405, 39syl 17 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
4127, 35, 8hlatjcl 36034 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑅𝐹) ∈ 𝐴𝑈𝐴) → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
423, 13, 15, 41syl3anc 1364 . . . . . . . 8 (𝜑 → ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾))
4327, 7lattr 17495 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ ((𝑅𝐹) 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4426, 40, 42, 34, 43syl13anc 1365 . . . . . . 7 (𝜑 → ((𝑃 ((𝑅𝐹) 𝑈) ∧ ((𝑅𝐹) 𝑈) 𝑊) → 𝑃 𝑊))
4538, 44mpan2d 690 . . . . . 6 (𝜑 → (𝑃 ((𝑅𝐹) 𝑈) → 𝑃 𝑊))
4622, 45mtod 199 . . . . 5 (𝜑 → ¬ 𝑃 ((𝑅𝐹) 𝑈))
4720simprd 496 . . . . . . 7 (𝜑𝑉 𝑊)
4818simprd 496 . . . . . . 7 (𝜑 → ¬ (𝐹𝑃) 𝑊)
49 nbrne2 4982 . . . . . . 7 ((𝑉 𝑊 ∧ ¬ (𝐹𝑃) 𝑊) → 𝑉 ≠ (𝐹𝑃))
5047, 48, 49syl2anc 584 . . . . . 6 (𝜑𝑉 ≠ (𝐹𝑃))
5150necomd 3039 . . . . 5 (𝜑 → (𝐹𝑃) ≠ 𝑉)
5246, 51jca 512 . . . 4 (𝜑 → (¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉))
5326adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝐾 ∈ Lat)
5440adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 ∈ (Base‘𝐾))
5527, 35, 8hlatjcl 36034 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑉𝐴𝑈𝐴) → (𝑉 𝑈) ∈ (Base‘𝐾))
563, 21, 15, 55syl3anc 1364 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) ∈ (Base‘𝐾))
5756adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) ∈ (Base‘𝐾))
5834adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑊 ∈ (Base‘𝐾))
597, 35, 8hlatlej2 36043 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → 𝑉 ((𝐹𝑃) 𝑉))
603, 19, 21, 59syl3anc 1364 . . . . . . . . . . 11 (𝜑𝑉 ((𝐹𝑃) 𝑉))
6160adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 ((𝐹𝑃) 𝑉))
62 simpr 485 . . . . . . . . . 10 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑃 𝑈) = ((𝐹𝑃) 𝑉))
6361, 62breqtrrd 4990 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑉 (𝑃 𝑈))
64 dia2dimlem1.uv . . . . . . . . . . . 12 (𝜑𝑈𝑉)
6564necomd 3039 . . . . . . . . . . 11 (𝜑𝑉𝑈)
667, 35, 8hlatexch2 36063 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴𝑃𝐴𝑈𝐴) ∧ 𝑉𝑈) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
673, 21, 5, 15, 65, 66syl131anc 1376 . . . . . . . . . 10 (𝜑 → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6867adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 (𝑃 𝑈) → 𝑃 (𝑉 𝑈)))
6963, 68mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 (𝑉 𝑈))
7027, 8atbase 35956 . . . . . . . . . . . 12 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
7121, 70syl 17 . . . . . . . . . . 11 (𝜑𝑉 ∈ (Base‘𝐾))
7227, 7, 35latjle12 17501 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑉 ∈ (Base‘𝐾) ∧ 𝑈 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7326, 71, 31, 34, 72syl13anc 1365 . . . . . . . . . 10 (𝜑 → ((𝑉 𝑊𝑈 𝑊) ↔ (𝑉 𝑈) 𝑊))
7447, 25, 73mpbi2and 708 . . . . . . . . 9 (𝜑 → (𝑉 𝑈) 𝑊)
7574adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → (𝑉 𝑈) 𝑊)
7627, 7, 53, 54, 57, 58, 69, 75lattrd 17497 . . . . . . 7 ((𝜑 ∧ (𝑃 𝑈) = ((𝐹𝑃) 𝑉)) → 𝑃 𝑊)
7776ex 413 . . . . . 6 (𝜑 → ((𝑃 𝑈) = ((𝐹𝑃) 𝑉) → 𝑃 𝑊))
7877necon3bd 2998 . . . . 5 (𝜑 → (¬ 𝑃 𝑊 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉)))
7922, 78mpd 15 . . . 4 (𝜑 → (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉))
807, 35, 8hlatlej2 36043 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝐹𝑃) (𝑃 (𝐹𝑃)))
813, 5, 19, 80syl3anc 1364 . . . . . 6 (𝜑 → (𝐹𝑃) (𝑃 (𝐹𝑃)))
82 dia2dimlem1.m . . . . . . . . . 10 = (meet‘𝐾)
837, 35, 82, 8, 9, 10, 11trlval2 36830 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
842, 16, 4, 83syl3anc 1364 . . . . . . . 8 (𝜑 → (𝑅𝐹) = ((𝑃 (𝐹𝑃)) 𝑊))
8584oveq2d 7032 . . . . . . 7 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)))
8627, 35, 8hlatjcl 36034 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
873, 5, 19, 86syl3anc 1364 . . . . . . . . 9 (𝜑 → (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾))
887, 35, 8hlatlej1 36042 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝐹𝑃) ∈ 𝐴) → 𝑃 (𝑃 (𝐹𝑃)))
893, 5, 19, 88syl3anc 1364 . . . . . . . . 9 (𝜑𝑃 (𝑃 (𝐹𝑃)))
9027, 7, 35, 82, 8atmod3i1 36531 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (𝑃𝐴 ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑃 (𝑃 (𝐹𝑃))) → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
913, 5, 87, 34, 89, 90syl131anc 1376 . . . . . . . 8 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = ((𝑃 (𝐹𝑃)) (𝑃 𝑊)))
92 eqid 2795 . . . . . . . . . . . 12 (1.‘𝐾) = (1.‘𝐾)
937, 35, 92, 8, 9lhpjat2 36688 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (1.‘𝐾))
942, 4, 93syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝑃 𝑊) = (1.‘𝐾))
9594oveq2d 7032 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = ((𝑃 (𝐹𝑃)) (1.‘𝐾)))
96 hlol 36028 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ OL)
973, 96syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ OL)
9827, 82, 92olm11 35894 . . . . . . . . . 10 ((𝐾 ∈ OL ∧ (𝑃 (𝐹𝑃)) ∈ (Base‘𝐾)) → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
9997, 87, 98syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝑃 (𝐹𝑃)) (1.‘𝐾)) = (𝑃 (𝐹𝑃)))
10095, 99eqtrd 2831 . . . . . . . 8 (𝜑 → ((𝑃 (𝐹𝑃)) (𝑃 𝑊)) = (𝑃 (𝐹𝑃)))
10191, 100eqtrd 2831 . . . . . . 7 (𝜑 → (𝑃 ((𝑃 (𝐹𝑃)) 𝑊)) = (𝑃 (𝐹𝑃)))
10285, 101eqtrd 2831 . . . . . 6 (𝜑 → (𝑃 (𝑅𝐹)) = (𝑃 (𝐹𝑃)))
10381, 102breqtrrd 4990 . . . . 5 (𝜑 → (𝐹𝑃) (𝑃 (𝑅𝐹)))
104 dia2dimlem1.rf . . . . . . 7 (𝜑 → (𝑅𝐹) (𝑈 𝑉))
10535, 8hlatjcom 36035 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) = (𝑉 𝑈))
1063, 15, 21, 105syl3anc 1364 . . . . . . 7 (𝜑 → (𝑈 𝑉) = (𝑉 𝑈))
107104, 106breqtrd 4988 . . . . . 6 (𝜑 → (𝑅𝐹) (𝑉 𝑈))
108 dia2dimlem1.ru . . . . . . 7 (𝜑 → (𝑅𝐹) ≠ 𝑈)
1097, 35, 8hlatexch2 36063 . . . . . . 7 ((𝐾 ∈ HL ∧ ((𝑅𝐹) ∈ 𝐴𝑉𝐴𝑈𝐴) ∧ (𝑅𝐹) ≠ 𝑈) → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
1103, 13, 21, 15, 108, 109syl131anc 1376 . . . . . 6 (𝜑 → ((𝑅𝐹) (𝑉 𝑈) → 𝑉 ((𝑅𝐹) 𝑈)))
111107, 110mpd 15 . . . . 5 (𝜑𝑉 ((𝑅𝐹) 𝑈))
112103, 111jca 512 . . . 4 (𝜑 → ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))
1137, 35, 82, 8ps-2c 36195 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐹) ∈ 𝐴) ∧ (𝑈𝐴 ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) ∧ ((¬ 𝑃 ((𝑅𝐹) 𝑈) ∧ (𝐹𝑃) ≠ 𝑉) ∧ (𝑃 𝑈) ≠ ((𝐹𝑃) 𝑉) ∧ ((𝐹𝑃) (𝑃 (𝑅𝐹)) ∧ 𝑉 ((𝑅𝐹) 𝑈)))) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1143, 5, 13, 15, 19, 21, 52, 79, 112, 113syl333anc 1395 . . 3 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ∈ 𝐴)
1151, 114syl5eqel 2887 . 2 (𝜑𝑄𝐴)
11627, 35, 8hlatjcl 36034 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑈𝐴) → (𝑃 𝑈) ∈ (Base‘𝐾))
1173, 5, 15, 116syl3anc 1364 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑈) ∈ (Base‘𝐾))
11827, 35, 8hlatjcl 36034 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝐹𝑃) ∈ 𝐴𝑉𝐴) → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
1193, 19, 21, 118syl3anc 1364 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾))
12027, 7, 82latmle1 17515 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
12126, 117, 119, 120syl3anc 1364 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) (𝑃 𝑈))
1221, 121eqbrtrid 4997 . . . . . . . . . 10 (𝜑𝑄 (𝑃 𝑈))
12327, 8atbase 35956 . . . . . . . . . . . . 13 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
124115, 123syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘𝐾))
12527, 7, 82latlem12 17517 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
12626, 124, 117, 34, 125syl13anc 1365 . . . . . . . . . . 11 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) ↔ 𝑄 ((𝑃 𝑈) 𝑊)))
127126biimpd 230 . . . . . . . . . 10 (𝜑 → ((𝑄 (𝑃 𝑈) ∧ 𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊)))
128122, 127mpand 691 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 ((𝑃 𝑈) 𝑊)))
129128imp 407 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 ((𝑃 𝑈) 𝑊))
130 eqid 2795 . . . . . . . . . . . . 13 (0.‘𝐾) = (0.‘𝐾)
1317, 82, 130, 8, 9lhpmat 36697 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃 𝑊) = (0.‘𝐾))
1322, 4, 131syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃 𝑊) = (0.‘𝐾))
133132oveq1d 7031 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((0.‘𝐾) 𝑈))
13427, 7, 35, 82, 8atmod4i1 36533 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑃 ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑈 𝑊) → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
1353, 15, 40, 34, 25, 134syl131anc 1376 . . . . . . . . . 10 (𝜑 → ((𝑃 𝑊) 𝑈) = ((𝑃 𝑈) 𝑊))
13627, 35, 130olj02 35893 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑈 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑈) = 𝑈)
13797, 31, 136syl2anc 584 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑈) = 𝑈)
138133, 135, 1373eqtr3d 2839 . . . . . . . . 9 (𝜑 → ((𝑃 𝑈) 𝑊) = 𝑈)
139138adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → ((𝑃 𝑈) 𝑊) = 𝑈)
140129, 139breqtrd 4988 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑈)
141 hlatl 36027 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1423, 141syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ AtLat)
143142adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝐾 ∈ AtLat)
144115adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄𝐴)
14515adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑈𝐴)
1467, 8atcmp 35978 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑈𝐴) → (𝑄 𝑈𝑄 = 𝑈))
147143, 144, 145, 146syl3anc 1364 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑈𝑄 = 𝑈))
148140, 147mpbid 233 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑈)
14927, 7, 82latmle2 17516 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑃 𝑈) ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾)) → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
15026, 117, 119, 149syl3anc 1364 . . . . . . . . . . 11 (𝜑 → ((𝑃 𝑈) ((𝐹𝑃) 𝑉)) ((𝐹𝑃) 𝑉))
1511, 150eqbrtrid 4997 . . . . . . . . . 10 (𝜑𝑄 ((𝐹𝑃) 𝑉))
15227, 7, 82latlem12 17517 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Base‘𝐾) ∧ ((𝐹𝑃) 𝑉) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾))) → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
15326, 124, 119, 34, 152syl13anc 1365 . . . . . . . . . . 11 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) ↔ 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
154153biimpd 230 . . . . . . . . . 10 (𝜑 → ((𝑄 ((𝐹𝑃) 𝑉) ∧ 𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
155151, 154mpand 691 . . . . . . . . 9 (𝜑 → (𝑄 𝑊𝑄 (((𝐹𝑃) 𝑉) 𝑊)))
156155imp 407 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑄 (((𝐹𝑃) 𝑉) 𝑊))
1577, 82, 130, 8, 9lhpmat 36697 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑃) ∈ 𝐴 ∧ ¬ (𝐹𝑃) 𝑊)) → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
1582, 18, 157syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐹𝑃) 𝑊) = (0.‘𝐾))
159158oveq1d 7031 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = ((0.‘𝐾) 𝑉))
16027, 8atbase 35956 . . . . . . . . . . . 12 ((𝐹𝑃) ∈ 𝐴 → (𝐹𝑃) ∈ (Base‘𝐾))
16119, 160syl 17 . . . . . . . . . . 11 (𝜑 → (𝐹𝑃) ∈ (Base‘𝐾))
16227, 7, 35, 82, 8atmod4i1 36533 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑉𝐴 ∧ (𝐹𝑃) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) ∧ 𝑉 𝑊) → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
1633, 21, 161, 34, 47, 162syl131anc 1376 . . . . . . . . . 10 (𝜑 → (((𝐹𝑃) 𝑊) 𝑉) = (((𝐹𝑃) 𝑉) 𝑊))
16427, 35, 130olj02 35893 . . . . . . . . . . 11 ((𝐾 ∈ OL ∧ 𝑉 ∈ (Base‘𝐾)) → ((0.‘𝐾) 𝑉) = 𝑉)
16597, 71, 164syl2anc 584 . . . . . . . . . 10 (𝜑 → ((0.‘𝐾) 𝑉) = 𝑉)
166159, 163, 1653eqtr3d 2839 . . . . . . . . 9 (𝜑 → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
167166adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → (((𝐹𝑃) 𝑉) 𝑊) = 𝑉)
168156, 167breqtrd 4988 . . . . . . 7 ((𝜑𝑄 𝑊) → 𝑄 𝑉)
16921adantr 481 . . . . . . . 8 ((𝜑𝑄 𝑊) → 𝑉𝐴)
1707, 8atcmp 35978 . . . . . . . 8 ((𝐾 ∈ AtLat ∧ 𝑄𝐴𝑉𝐴) → (𝑄 𝑉𝑄 = 𝑉))
171143, 144, 169, 170syl3anc 1364 . . . . . . 7 ((𝜑𝑄 𝑊) → (𝑄 𝑉𝑄 = 𝑉))
172168, 171mpbid 233 . . . . . 6 ((𝜑𝑄 𝑊) → 𝑄 = 𝑉)
173148, 172eqtr3d 2833 . . . . 5 ((𝜑𝑄 𝑊) → 𝑈 = 𝑉)
174173ex 413 . . . 4 (𝜑 → (𝑄 𝑊𝑈 = 𝑉))
175174necon3ad 2997 . . 3 (𝜑 → (𝑈𝑉 → ¬ 𝑄 𝑊))
17664, 175mpd 15 . 2 (𝜑 → ¬ 𝑄 𝑊)
177115, 176jca 512 1 (𝜑 → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  cfv 6225  (class class class)co 7016  Basecbs 16312  lecple 16401  joincjn 17383  meetcmee 17384  0.cp0 17476  1.cp1 17477  Latclat 17484  OLcol 35841  Atomscatm 35930  AtLatcal 35931  HLchlt 36017  LHypclh 36651  LTrncltrn 36768  trLctrl 36825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-1st 7545  df-2nd 7546  df-map 8258  df-proset 17367  df-poset 17385  df-plt 17397  df-lub 17413  df-glb 17414  df-join 17415  df-meet 17416  df-p0 17478  df-p1 17479  df-lat 17485  df-clat 17547  df-oposet 35843  df-ol 35845  df-oml 35846  df-covers 35933  df-ats 35934  df-atl 35965  df-cvlat 35989  df-hlat 36018  df-llines 36165  df-psubsp 36170  df-pmap 36171  df-padd 36463  df-lhyp 36655  df-laut 36656  df-ldil 36771  df-ltrn 36772  df-trl 36826
This theorem is referenced by:  dia2dimlem3  37733  dia2dimlem6  37736
  Copyright terms: Public domain W3C validator